dc.description |
Wave energy conversion devices are a rapidly growing interest worldwide for the potential to harness a sustainable and renewable energy source. Due to the oscillatory nature of ocean waves, the power generated from a permanent magnet linear generator (PMLG) for ocean wave energy conversion is pulsed. Focusing on direct drive technology, the PMLG directly translates the motion of the waves into electrical energy. The power generated, left unconditioned, is not easily used or stored.
With conventional diode rectification topologies, line currents can not be controlled easily, resulting in an uncontrolled generator output and force. With an active rectifier topology, the real and reactive power from the PMLG is fully controllable. This thesis will investigate the generator modeling and design of a novel three-phase active rectifier topology and force controller with a dc-dc converter for bus voltage regulation. An in depth analysis for the controller design and simulations are presented. Hardware for the three-phase active rectifier is specified and built with initial lab test results. The controller design is implemented with National Instruments’ LabView and compiled on a CompactRIO real-time controller. |
|