أعرض تسجيلة المادة بشكل مبسط

dc.contributor Peszynska, Malgorzata
dc.contributor Showalter, Ralph
dc.contributor Lee, John
dc.contributor Schmittner, Andreas
dc.date 2007-02-27T16:50:18Z
dc.date 2007-02-27T16:50:18Z
dc.date 2007-02-08
dc.date 2007-02-27T16:50:18Z
dc.date.accessioned 2013-10-16T07:44:40Z
dc.date.available 2013-10-16T07:44:40Z
dc.date.issued 2013-10-16
dc.identifier http://hdl.handle.net/1957/4042
dc.identifier.uri http://koha.mediu.edu.my:8181/xmlui/handle/1957/4042
dc.description Graduation date: 2007
dc.description Water is one of the most biologically and economically important substances on Earth. A significant portion of Earth's water subsists in the subsurface. Our ability to monitor the flow and transport of water and other fluids through this unseen environment is crucial for a myriad of reasons. One difficulty we encounter when attempting to model such a diverse environment is the nonlinearity of the partial differential equations describing the complex system. In order to overcome this adversity, we explore Newton's method and its variants as feasible numerical solvers. The nonlinearity of the model problem is perturbed to create a linearized one. We then investigate whether this linearized version is a reasonable replacement. Finite difference methods are used to approximate the partial differential equations. We assess the appropriateness of approximating the analytical Jacobian that arises in Newton's method, with an approximation method, to handle the event when certain derivative information is not available.
dc.language en_US
dc.subject Newton's method
dc.subject Diffusion equation
dc.title Nonlinear solvers for a model problem of fluid flow in the subsurface
dc.type Thesis


الملفات في هذه المادة

الملفات الحجم الصيغة عرض

لا توجد أي ملفات مرتبطة بهذه المادة.

هذه المادة تبدو في المجموعات التالية:

أعرض تسجيلة المادة بشكل مبسط