DSpace Repository

Perturbative Quantum Gravity and its Relation to Gauge Theory

Show simple item record

dc.creator Bern Zvi
dc.date 2002
dc.date.accessioned 2013-06-01T11:54:57Z
dc.date.available 2013-06-01T11:54:57Z
dc.date.issued 2013-06-01
dc.identifier http://www.livingreviews.org/lrr-2002-5
dc.identifier http://www.doaj.org/doaj?func=openurl&genre=article&issn=14338351&date=2002&volume=5&issue=&spage=5
dc.identifier.uri http://koha.mediu.edu.my:8181/jspui/handle/123456789/8705
dc.description In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on $D$-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input thegravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.
dc.publisher Albert Einstein Institut, Max-Planck Institute for Gravitati
dc.source Living Reviews in Relativity
dc.subject Quantum General Relativity
dc.title Perturbative Quantum Gravity and its Relation to Gauge Theory


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account