Tsypin V. S.; Severo J. H. F.; Nascimento I. C.; Galvão R. M. O.; Kuznetsov Yu. K.
Description:
There is a renewed interest in using Alfvén waves (AW) in tokamak plasmas. Previously, AW were actively explored mostly for current drive and plasma heating in tokamaks. Presently, the possibility of the anomalous and neoclassical transport suppression by AW in tokamak plasmas is being vividly discussed. AW can also induce poloidal and toroidal plasma rotation. Toroidal plasma rotation can reach the subsonic level. These flows can substantially affect neoclassical transport both in collisional and weakly collisional plasmas. In this paper, the effect of plasma subsonic toroidal flows induced by Alfvén waves on transport processes in the edge of elongated tokamak is investigated. The dependence of poloidal plasma rotation and ion heat conductivity on the elongation parameter and the ratio of induced toroidal velocity to the sonic speed are analytically obtained.