Gonçalves L. L.; López de Haro M.; Tagüeña-Martínez J.
Description:
The kinetic Ising model on an n-isotopic chain is considered in the framework of Glauber dynamics. The chain is composed of N segments with n sites, each one occupied by a different isotope. Due to the isotopic mass difference, the n spins in each segment have different relaxation times in the absence of interactions, and consequently the dynamics of the system is governed by multiple relaxation mechanisms. The solution is obtained in closed form for arbitrary n, by reducing the problem to a set of n coupled equations, and it is shown rigorously that the critical exponent z is equal to 2. Explicit results are obtained numerically for any temperature and it is also shown that the dynamic susceptibility satisfies the new scaling (Nagel scaling) proposed for glass-forming liquids. This is in agreement with our recent results (L. L. Gonçalves, M. López de Haro, J. Tagüeña-Martínez and R. B. Stinchcombe, Phys. Rev. Lett. 84 , 1507 (2000)), which relate this new scaling function to multiple relaxation processes.