DSpace Repository

Brownian motion limit of random walks in symmetric non-homogeneous media

Show simple item record

dc.creator Marchetti Domingos H. U.
dc.creator Silva Roberto da
dc.date 1999
dc.date.accessioned 2013-05-29T23:11:51Z
dc.date.available 2013-05-29T23:11:51Z
dc.date.issued 2013-05-30
dc.identifier http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97331999000300014
dc.identifier http://www.doaj.org/doaj?func=openurl&genre=article&issn=01039733&date=1999&volume=29&issue=3&spage=492
dc.identifier.uri http://koha.mediu.edu.my:8181/jspui/handle/123456789/2657
dc.description The phenomenon of macroscopic homogenization is illustrated with a simple example of diffusion. We examine the conditions under which a d-dimensional simple random walk in a symmetric random media converges to a Brownian motion. For d = 1, both the macroscopic homogeneity condition and the diffusion coeficient can be read from an explicit expression for the Green's function. Except for this case, the two available formulas for the effective diffusion matrix kappa do not explicit show how macroscopic homogenization takes place. Using an electrostatic analogy due to Anshelevich, Khanin and Sinai [AKS], we discuss upper and lower bounds on the diffusion coeficient kappa for d >1.
dc.publisher Sociedade Brasileira de Física
dc.source Brazilian Journal of Physics
dc.title Brownian motion limit of random walks in symmetric non-homogeneous media


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account