أعرض تسجيلة المادة بشكل مبسط

dc.creator Evans, George W.
dc.creator Honkapohja, Seppo
dc.creator Williams, Noah
dc.date 2005
dc.date.accessioned 2013-10-16T07:02:31Z
dc.date.available 2013-10-16T07:02:31Z
dc.date.issued 2013-10-16
dc.identifier http://hdl.handle.net/10419/19040
dc.identifier ppn:503712469
dc.identifier.uri http://koha.mediu.edu.my:8181/xmlui/handle/10419/19040
dc.description We study the properties of generalized stochastic gradient (GSG) learning in forward-looking models. We examine how the conditions for stability of standard stochastic gradient (SG) learning both differ from and are related to E-stability, which governs stability under least squares learning. SG algorithms are sensitive to units of measurement and we show that there is a transformation of variables for which E-stability governs SG stability. GSG algorithms with constant gain have a deeper justification in terms of parameter drift, robustness and risk sensitivity.
dc.language eng
dc.publisher
dc.relation CESifo working papers 1576
dc.rights http://www.econstor.eu/dspace/Nutzungsbedingungen
dc.subject C65
dc.subject C62
dc.subject E17
dc.subject E10
dc.subject D83
dc.subject ddc:330
dc.subject adaptive learning
dc.subject E-stability
dc.subject recursive least squares
dc.subject robust estimation
dc.subject Rationale Erwartung
dc.subject Lernprozess
dc.subject Prognoseverfahren
dc.subject Gleichgewichtsstabilität
dc.subject Theorie
dc.title Generalized stochastic gradient learning
dc.type doc-type:workingPaper


الملفات في هذه المادة

الملفات الحجم الصيغة عرض

لا توجد أي ملفات مرتبطة بهذه المادة.

هذه المادة تبدو في المجموعات التالية:

أعرض تسجيلة المادة بشكل مبسط