DSpace Repository

Landau levels and Riemann zeros

Show simple item record

dc.creator Sierra, Germán
dc.creator Townsend, Paul K.
dc.date 2008-07-02T11:38:03Z
dc.date 2008-07-02T11:38:03Z
dc.date 2008-09-12
dc.date.accessioned 2017-01-31T02:19:30Z
dc.date.available 2017-01-31T02:19:30Z
dc.identifier Physical Review Letters 101(11): 110201 (2008)
dc.identifier 0031-9007
dc.identifier http://hdl.handle.net/10261/5531
dc.identifier 10.1103/PhysRevLett.101.110201
dc.identifier.uri http://dspace.mediu.edu.my:8181/xmlui/handle/10261/5531
dc.description 4 pages, 2 figures.-- PACS numbers: 02.10.De, 05.45.Mt.-- ArXiv pre-print available at: http://arxiv.org/abs/0805.4079
dc.description The number N(E) of complex zeros of the Riemann zeta function with positive imaginary part less than E is the sum of a `smooth' function Ñ(E) and a 'fluctuation'. Berry and Keating have shown that the asymptotic expansion of Ñ(E) counts states of positive energy less than E in a 'regularized' semi-classical model with classical Hamiltonian H=xp. For a different regularization, Connes has shown that it counts states 'missing' from a continuum. Here we show how the 'absorption spectrum' model of Connes emerges as the lowest Landau level limit of a specific quantum mechanical model for a charged particle on a planar surface in an electric potential and uniform magnetic field. We suggest a role for the higher Landau levels in the fluctuation part of N(E).
dc.description This work was supported by the CICYT project FIS2004-04885 (G.S.) and by the EPSRC (P.K.T.). GS also acknowledges ESF Science Programme INSTANS 2005-2010.
dc.format 187726 bytes
dc.format application/pdf
dc.language eng
dc.publisher American Physical Society
dc.relation IFT-UAM/CSIC 08-26
dc.relation DAMTP-2008-46
dc.relation http://dx.doi.org/10.1103/PhysRevLett.101.110201
dc.rights openAccess
dc.subject Mathematical Physics
dc.subject Mesoscopic Systems and Quantum Hall Effect
dc.subject High Energy Physics - Theory
dc.subject Number Theory
dc.subject Quantum Physics
dc.subject [PACS] Algebraic structures and number theory
dc.subject [PACS] Quantum chaos; semiclassical methods
dc.title Landau levels and Riemann zeros
dc.type Artículo


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account