dc.creator |
Sierra, Germán |
|
dc.creator |
Townsend, Paul K. |
|
dc.date |
2008-07-02T11:38:03Z |
|
dc.date |
2008-07-02T11:38:03Z |
|
dc.date |
2008-09-12 |
|
dc.date.accessioned |
2017-01-31T02:19:30Z |
|
dc.date.available |
2017-01-31T02:19:30Z |
|
dc.identifier |
Physical Review Letters 101(11): 110201 (2008) |
|
dc.identifier |
0031-9007 |
|
dc.identifier |
http://hdl.handle.net/10261/5531 |
|
dc.identifier |
10.1103/PhysRevLett.101.110201 |
|
dc.identifier.uri |
http://dspace.mediu.edu.my:8181/xmlui/handle/10261/5531 |
|
dc.description |
4 pages, 2 figures.-- PACS numbers: 02.10.De, 05.45.Mt.-- ArXiv pre-print available at: http://arxiv.org/abs/0805.4079 |
|
dc.description |
The number N(E) of complex zeros of the Riemann zeta function with positive imaginary part less than E is the sum of a `smooth' function Ñ(E) and a 'fluctuation'. Berry and Keating have shown that the asymptotic expansion of Ñ(E) counts states of positive energy less than E in a 'regularized' semi-classical model with classical Hamiltonian H=xp. For a different regularization, Connes has shown that it counts states 'missing' from a continuum. Here we show how the 'absorption spectrum' model of Connes emerges as the lowest Landau level limit of a specific quantum mechanical model for a charged particle on a planar surface in an electric potential and uniform magnetic field. We suggest a role for the higher Landau levels in the fluctuation part of N(E). |
|
dc.description |
This work was supported by the CICYT
project FIS2004-04885 (G.S.) and by the EPSRC (P.K.T.). GS also acknowledges ESF Science Programme INSTANS 2005-2010. |
|
dc.format |
187726 bytes |
|
dc.format |
application/pdf |
|
dc.language |
eng |
|
dc.publisher |
American Physical Society |
|
dc.relation |
IFT-UAM/CSIC 08-26 |
|
dc.relation |
DAMTP-2008-46 |
|
dc.relation |
http://dx.doi.org/10.1103/PhysRevLett.101.110201 |
|
dc.rights |
openAccess |
|
dc.subject |
Mathematical Physics |
|
dc.subject |
Mesoscopic Systems and Quantum Hall Effect |
|
dc.subject |
High Energy Physics - Theory |
|
dc.subject |
Number Theory |
|
dc.subject |
Quantum Physics |
|
dc.subject |
[PACS] Algebraic structures and number theory |
|
dc.subject |
[PACS] Quantum chaos; semiclassical methods |
|
dc.title |
Landau levels and Riemann zeros |
|
dc.type |
Artículo |
|