Published as Journal Series No. 10626, Agricultural Research Division, University of Nebraska.
We previously cloned and sequenced a cDNA encoding soybean ferric leghemoglobin reductase (FLbR), an enzyme postulated to play an important role in maintaining leghemoglobin in a functional ferrous state in nitrogen-fixing root nodules. This cDNA was sub-cloned into an expression plasmid, pTrcHis C, and overexpressed in Escherichia coli. The recombinant FLbR protein, which was purified by two steps of column chromatography, was catalytically active and fully functional. The recombinant FLbR cross-reacted with antisera raised against native FLbR purified from soybean root nodules. The recombinant FLbR, the native FLbR purified from soybean (Glycine max L.) root nodules, and dihydrolipoamide dehydrogenases from pig heart and yeast had similar but not identical ultraviolet-visible absorption and fluorescence spectra, cofactor binding, and kinetic properties. FLbR shared common structural features in the active site and prosthetic group binding sites with other pyridine nucleotide-disulfide oxidoreductases such as dihydrolipoamide dehydrogenases, but displayed different microenvironments for the prosthetic groups.
This work was supported by grants from the US. Department of Agriculture (grant 93-0318) to R.V.K. and the Dirección General de Investigación Científica y Técnica (PB92-0058) to M.B.
Peer reviewed