PMID: 17960421.-- Final full-text version available at: http://dx.doi.org/10.1007/s00438-007-0301-6 (www.springerlink.com)
THO/TREX is a conserved nuclear complex that functions in mRNP biogenesis and plays a role in preventing the transcription-associated genetic instability. THO is composed of Tho2, Hpr1, Mft1 and Thp2 subunits, which associate with the Sub2-Yra1 export factors and Tex1 to form the TREX complex. To compare the functional relevance of the different THO/TREX subunits, we determined the effect of their null mutations on mRNA accumulation and recombination. Unexpectedly, we noticed that a full deletion of HPR1, hpr1DeltaK, conferred stronger hyper-recombination phenotype and gene expression defects than did hpr1DeltaH, the allele encoding a C-terminal truncated protein which was used in most previous studies. We show that tho2Delta and, to a lesser extent, hpr1DeltaK are the THO mutations with the highest impact on all phenotypes, and that sub2Delta shows a similar transcription-dependent hyper-recombination phenotype and in vivo transcription impairment as hpr1DeltaK and tho2Delta. Recombination and transcription analyses indicate that THO/TREX mutants share a moderate but significant effect on gene conversion and ectopic recombination, as well as transcription impairment of even short and low GC-content genes. Our data provide new information on the relevance of these proteins in mRNP biogenesis and in the maintenance of genomic integrity.
This work was supported by the Ministry of Science and Education of Spain (grants SAF2003–00204 and BMC2006–05260) and Junta de Andalucía (CVI-102).
Peer reviewed