The increase in species richness from the poles to the Equator has been observed in numerous terrestrial and aquatic taxa. A number of different hypotheses have been put forward as explanations for this trend, e.g. area and energy availability. However, whether these hypotheses apply to large spatial scales in marine environments remains unclear. The present study shows a clear latitudinal gradient from high to low latitude (from 80 degrees N to 70 degrees S) in marine species richness for 6643 species (fishes and invertebrates) in 10 different taxa dwelling in benthic and pelagic habitats on both sides of the Atlantic. The patterns in benthic taxa are strongly influenced by coastal hydrographic processes, with marked peaks and troughs, and consequently the gradients are not symmetric along both Atlantic sides. Pelagic taxa show a plateau-shaped distribution and the influence from coastal events on gradients could not be demonstrated. The relationships between species richness and different environmental factors indicate that area size does not explain the latitudinal pattern in benthic species richness on a large spatial scale. Sea-surface temperature (positive relationship) is the best predictor of this pattern for benthic species, and nitrate concentration (negative relationship) is the best predictor for pelagic species. The results call into question the existence of a single primary cause that would explain the pattern in marine species richness on a large spatial scale.
Peer reviewed