Author manuscript. Published in final edited form as: Biochim Biophys Acta. 2007 September; 1768(9): 2213–2221.
The conjugated phenyltetraene PTE-ET-18-OMe (all-(E)-1-O-(15’-Phenylpentadeca-8’,10’,12’,14’-tetraenyl)-2-O-methyl-rac-glycero-3-phosphocholine), is a recently developed fluorescent lysophospholipid analog of edelfosine, (Quesada et al. (2004) J. Med. Chem. 47, 5333–5335). We investigated the use of this analog as a probe of membrane structure. PTE-ET-18-OMe was found to have several properties that are favorable for fluorescence anisotropy (polarization) experiments in membranes, including low fluorescence in water and moderately strong association with lipid bilayers. PTE-ET-18-OMe has absorbance and fluorescence properties similar to those of diphenylhexatriene (DPH) probes, with about as large a difference between its fluorescence anisotropy in liquid disordered (Ld) and ordered states (gel and Lo) as observed for DPH. Also like DPH, PTE-ET-18-OMe has a moderate affinity for both gel state ordered domains and Lo state ordered domains (rafts). However, unlike fluorescent sterols or DPH (Megha and London (2004) J. Biol. Chem. 279, 9997–10004), PTE-ET-18-OMe is not displaced from ordered domains by ceramide. Also unlike DPH, PTE-ET-18-OMe shows only slow exchange between the inner and outer leaflets of membrane bilayers, and can thus be used to examine anisotropy of an individual leaflet of a lipid bilayer. Since PTE-ET-18-OMe is a zwitterionic molecule, it should not be as influenced by electrostatic interactions as are other probes that do not cross the lipid bilayer but have a net charge. We conclude that PTE-ET-18-OMe has some unique properties that should make it a useful fluorescence probe of membrane structure.
This work was supported by NIH grant GM 48596 to EL and a Spanish MEC grant BQU2003/04413 to AUA.
Peer reviewed