المستودع الأكاديمي جامعة المدينة

Radiative Transfer Simulations Using Mesoscale Cloud Model Outputs: Comparisons with Passive Microwave and Infrared Satellite Observations for Midlatitudes

أعرض تسجيلة المادة بشكل مبسط

dc.creator Meirold-Mautner, Ingo
dc.creator Prigent, Catherine
dc.creator Defer, Eric
dc.creator Pardo Carrión, Juan Ramón
dc.creator Chaboureau, Jean-Pierre
dc.creator Pinty, Jean-Pierre
dc.creator Mech, Mario
dc.creator Crewell, Susanne
dc.date 2008-01-03T17:26:08Z
dc.date 2008-01-03T17:26:08Z
dc.date 2007-05
dc.date.accessioned 2017-01-31T00:59:39Z
dc.date.available 2017-01-31T00:59:39Z
dc.identifier Journal of the Atmospheric Sciences 64, 5 (2007): 1550-1568.
dc.identifier 0022-4928
dc.identifier http://hdl.handle.net/10261/2656
dc.identifier 10.1175/JAS3896.1
dc.identifier.uri http://dspace.mediu.edu.my:8181/xmlui/handle/10261/2656
dc.description Real midlatitude meteorological cases are simulated over western Europe with the cloud mesoscale model Méso-NH, and the outputs are used to calculate brightness temperatures at microwave frequencies with the Atmospheric Transmission at Microwave (ATM) radiative transfer model. Satellite-observed brightness temperatures (TBs) from the Advanced Microwave Scanning Unit B (AMSU-B) and the Special Sensor Microwave Imager (SSM/I) are compared to the simulated ones. In this paper, one specific situation is examined in detail. The infrared responses have also been calculated and compared to the Meteosat coincident observations. Overall agreement is obtained between the simulated and the observed brightness temperatures in the microwave and in the infrared. The large-scale dynamical structure of the cloud system is well captured by Méso-NH. However, in regions with large quantities of frozen hydrometeors, the comparison shows that the simulated microwave TBs are higher than the measured ones in the window channels at high frequencies, indicating that the calculation does not predict enough scattering. The factors responsible for the scattering (frozen particle distribution, calculation of particle dielectric properties, and nonsphericity of the particles) are analyzed. To assess the quality of the cloud and precipitation simulations by Méso-NH, the microphysical fields predicted by the German Lokal-Modell are also considered. Results show that in these midlatitude situations, the treatment of the snow category has a high impact on the simulated brightness temperatures. The snow scattering parameters are tuned to match the discrete dipole approximation calculations and to obtain a good agreement between simulations and observations even in the areas with significant frozen particles. Analysis of the other meteorological simulations confirms these results. Comparing simulations and observations in the microwave provides a powerful evaluation of resolved clouds in mesoscale models, especially the precipitating ice phase.
dc.description [Completion of this field awaiting access to full-text paper]
dc.description Peer reviewed
dc.format 24992 bytes
dc.format application/pdf
dc.language eng
dc.publisher American Meteorological Society
dc.rights closedAccess
dc.subject Radiative Transfer
dc.subject Mesoscale Weather Models
dc.subject Meteorology
dc.subject Midlatitudes
dc.subject Satellite Observations
dc.subject Microwave Scanning
dc.subject Infrared Images
dc.title Radiative Transfer Simulations Using Mesoscale Cloud Model Outputs: Comparisons with Passive Microwave and Infrared Satellite Observations for Midlatitudes
dc.type Artículo


الملفات في هذه المادة

الملفات الحجم الصيغة عرض

لا توجد أي ملفات مرتبطة بهذه المادة.

هذه المادة تبدو في المجموعات التالية:

أعرض تسجيلة المادة بشكل مبسط