The constraint distribution in non-holonomic mechanics has a double role. On one hand, it is a kinematic constraint, that is, it is a restriction on the motion itself. On the other hand, it is also a restriction on the allowed variations when using D'Alembert's Principle to derive the equations of motion. We will show that many systems of physical interest where D'Alembert's Principle does not apply can be conveniently modeled within the general idea of the Principle of Virtual Work by the introduction of both kinematic constraints and variational constraints as being independent entities. This includes, for example, elastic rolling bodies and pneumatic tires. Also, D'Alembert's Principle and Chetaev's Principle fall into this scheme. We emphasize the geometric point of view, avoiding the use of local coordinates, which is the appropriate setting for dealing with questions of global nature, like reduction.
This work has been partially supported by MICYT (Spain) (Grant BFM2001-2272). The work of H. Cendra was realized during a sabbatical year spent at Universidad Carlos III de Madrid. He also wants to thank CSIC for its kind hospitality.
Peer reviewed