أعرض تسجيلة المادة بشكل مبسط

dc.creator Ferraro, Sebastián
dc.creator Iglesias, David
dc.creator Martín de Diego, David
dc.date 2007-11-21T12:36:41Z
dc.date 2007-11-21T12:36:41Z
dc.date 2007-10-24
dc.date.accessioned 2017-01-31T00:58:54Z
dc.date.available 2017-01-31T00:58:54Z
dc.identifier arXiv:0709.1463v2
dc.identifier http://hdl.handle.net/10261/2276
dc.identifier.uri http://dspace.mediu.edu.my:8181/xmlui/handle/10261/2276
dc.description In this paper, we propose a geometric integrator for nonholonomic mechanical systems. It can be applied to discrete Lagrangian systems specified through a discrete Lagrangian defined on QxQ, where Q is the configuration manifold, and a (generally nonintegrable) distribution in TQ. In the proposed method, a discretization of the constraints is not required. We show that the method preserves the discrete nonholonomic momentum map, and also that the nonholonomic constraints are preserved in average. We study in particular the case where Q has a Lie group structure and the discrete Lagrangian and/or nonholonomic constraints have various invariance properties, and show that the method is also energy-preserving in some important cases.
dc.description This work has been partially supported by MEC (Spain) Grant MTM 2007-62478, project "Ingenio Mathematica" (i-MATH) No. CSD 2006-00032 (Consolider-Ingenio 2010) and Project SIMUMAT S-0505/ESP/0158 of the CAM. S. Ferraro also wants to thank SIMUMAT for a Research contract and D. Iglesias, to MEC, for a Research Contract "Juan de la Cierva".
dc.description Peer reviewed
dc.language eng
dc.rights openAccess
dc.title Momentum and energy preserving integrators for nonholonomic dynamics
dc.type Artículo


الملفات في هذه المادة

الملفات الحجم الصيغة عرض

لا توجد أي ملفات مرتبطة بهذه المادة.

هذه المادة تبدو في المجموعات التالية:

أعرض تسجيلة المادة بشكل مبسط