DSpace Repository

Conservation laws and symmetry in economic growth models: a geometrical approach

Show simple item record

dc.creator León, Manuel de
dc.creator Martín de Diego, David
dc.date 2007-11-20T14:52:10Z
dc.date 2007-11-20T14:52:10Z
dc.date 1998
dc.date.accessioned 2017-01-31T00:58:51Z
dc.date.available 2017-01-31T00:58:51Z
dc.identifier Extracta Mathematicae, 1998, 13 (3): 335-348.
dc.identifier 0213-8743
dc.identifier http://hdl.handle.net/10261/2250
dc.identifier.uri http://dspace.mediu.edu.my:8181/xmlui/handle/10261/2250
dc.description The aim of the present paper is twofold. On one hand, we present a classification of infinitesimal symmetries for Lagrangian systems, and the corresponding Noether theorems. The derivation of the result is made by using the symplectic techniques. Some of the results were previously obtained by other authors (see Prince (1985) for instance), and an exhaustive presentation can be found in de León and Martín de Diego (1995, 1996). Let us note that these results are true even if the Lagrangian function is singular, which is usually the case in economic models. On the other hand, we apply our methods to derive some well-known conservation laws, in particular the income-wealth conservation law obtained by Weitzman (1976) and the Samuelson's first law (see Samuelson (1970)).
dc.description This work has been supported by grants DGICYT (Spain) Project PB94-0106.
dc.description Peer reviewed
dc.language eng
dc.publisher Universidad de Extremadura
dc.rights openAccess
dc.subject Sistemas mecánicos
dc.subject Ecuaciones diferenciales
dc.subject Ecuaciones de segundo orden
dc.subject Crecimiento económico
dc.subject Modelo geométrico
dc.subject Sistema infinitesimal
dc.subject Sistemas dinámicos
dc.title Conservation laws and symmetry in economic growth models: a geometrical approach
dc.title Leyes de conservación y simetría en modelos de crecimiento económico: una aproximación geométrica
dc.type Artículo


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account