

Black-Box Tool for Web Applications Vulnerabilities

Detection Based On Web Crawler

HAKKAR FOUZI

 Master of Science in information and communication

technology

Faculty of Computer & Information Technology

Al-Madinah International University

2016/1437H

i

Black-Box Tool for Web Applications Vulnerabilities

Detection Based On Web Crawler

HAKKAR FOUZI

MIT143BG196

Thesis submitted in fulfillment

of the requirements for the degree of MASTER OF SCIENCE IN

INFORMATION AND COMMUNICATION TECHNOLOGY

Faculty of Computer & Information Technology

Al-Madinah International University

Supervised by:

 Asst. Prof. Dr. Shadi M.S. Hilles

August 2016/ dhul qada’ah 1437

ii

CERTIFICATION OF DISSERTATION WORK PAGE

The thesis of student named: HAKKAR FOUZI

Undertitle: BLACK-BOX TOOL FOR WEB APPLICATIONS VULNERABILITIES

DETECTION BASED ON WEB CRAWLER

Has been approved by the following:
Supervisor Academic

 ……………………….. Name

 ……………………….. Signature

Supervisor of amendments

 ……………………….. Name

 ……………………….. Signature

Head of Department

 ……………………….. Name

 ……………………….. Signature

Dean, of the Faculty

 ……………………….. Name

 ……………………….. Signature

Deanship of Postgraduate Studies

 ……………………….. Name

 ……………………….. Signature

iii

DECLARATION

I declare that the work in this thesis is my original work; it has not submitted

previously or concurrently for any degree or qualification at any other institutions,And

I hereby confirm that there is no plagiarism or data falsification/ fabrication in the

thesis, and scholary integrity is upheld as according to the Alamdinah International

University (MEDIU).

 Name: ………………………….

 Signature ………………………..

 Date: ……………………………

iv

COPYRIGHT

 Al-MADINAH INTERNATIONAL UNIVERSITY

DECLARATION OF COPYRIGHT AND AFFIRMATION

OF FAIR USE OF UNPUBLISHED RESEARCH

Copyright © 2016 by HAKKAR FOUZI All rights reserved.

BLACK-BOX TOOL FOR WEB APPLICATIONS VULNERABILITIES DETECTION

BASED ON WEB CRAWLER.

No part of this unpublished research may be reproduced, stored in a retrieval system,

or transmitted, in any form or by any means, electronic, mechanical, photocopying,

Recording or otherwise without prior written permission of the copyright holder

Except as provided below.

1. Any material contained in or derived from this unpublished research may only

2. Be used by others in their writing with due acknowledgement.

3. MEDIU or its library will have the right to make and transmit copies

4. (Print or electronic) for institutional and academic purposes.

5. The MEDIU library will have the right to make, store in a retrieval system

 and supply copies of this unpublished research if requested by other

Universities and research libraries.

Name: ………………………….

Signature ………………………..

Date: ……………………………

v

ABSTRACT

Web applications have become increasingly vulnerable and exposed to malicious

attacks that could affect essential properties of information systems such as

confidentiality, integrity, or availability. To cope with these threats, it is necessary to

develop efficient security protection mechanisms and assessment techniques (firewall,

intrusion detection system, Web scanner, etc.). The purpose of this work is to

investigate on analyzing and securing the web versus vulnerabilities, and implement a

black box based on web crawler can provide us this analyzes. There was large press-

news coverage of hot incidences of security concerning the loss of sensible banks

credit card information due to a huge number of customers. Mostly of vulnerabilities

on the web application come from generic input validation problems. Some examples

of those vulnerabilities are XSS (Cross-Site Scripting) and SQL injection. Though

most of web vulnerabilities are facile to comprehend and bypassing, unluckily, many

web developers are not security-aware. As a consequence, there exist many vulnerable

web sites on the Internet. The present work investigate into available vulnerabilities

scanning tools and its capabilities, also demonstrates BBWAV (Black Box for Web

Application Vulnerabilities), an open-source web vulnerability scanner that

automatically analyzes web sites with the objective of detecting exploitable

vulnerabilities such as SQL injection, XSS (Cross-site scripting) and RFI (Remote file

inclusion).

Keywords: vulnerability, Black-Box tool, XSS, SQL Injection, RFI, scan, security,

web application.

vi

ACKNOWLEDGEMENTS

I feel so lucky to be sitting here at this moment. I could never go this far

without the people who have helped me during my Master journey.

I would like to acknowledge the following people, without whose support this

dissertation would not have been possible.

My advisor Asst. Prof. Dr. Shadi M.S. Hilles, have been a continual source of

inspiration and support throughout the years that I have had the pleasure to work with

him. I would also like to thank my committee members, Asst. Prof. Dr. Najeeb Abbas

Al-Sammarraie, Asst. Prof. Dr. Mamoun Mohamad Jamous, and Asst. Prof. Dr.

Yousef Abu Baker El-Ebiary, I am extremely grateful.

To all of the past, present, and affiliated students and lecturer of MEDIU, thanks for

all the great memories. I will never forget the marathon studying sessions.

Thanks to all the people in and around Malaysia who made my time here so

enjoyable. Last but not least, I would give my special gratitude to my parents for their

unconditional love and endless support from across the ocean. Without them, I could

never be who I am. It is their sacrifice that makes my dream come true.

Hakkar Fouzi

January 2016

vii

DEDICATION

I’d like to take this moment to acknowledge those who were surrounding me

by love and caring; my family, starting with my mother, Akila Hakkar, the woman

that give me all the physical and metaphysical support, she stand behind me to

become the man I am about “thank you mama, I love you”. I am sending many thanks

to my brothers Yassine, Djamel, Zohir, Samir, and sisters, Souad and Khadidja, you

were always charging my faith and confidence to face the life challenges, thank you

fellas. In this context, I am remembering my dad with his good words and astonishing

quotes, may Allah rest the soul of my deceased father in peace and grant him a great

place in heaven. I’d like to aim plenty of appreciations to my friends and colleagues in

my first home, Algeria, and in my second home, Malaysia, especially; Fahed S. Al

Kerdi, Abdoul Rahman M. R. Al Jounidy, Karam Qubsi, Asst. Prof. Elsayed M.

Salem, and all the names not mentioned but live in mind.

viii

TABLE OF CONTENTS

TITLE PAGE .. i

CERTIFICATION OF DISSERTATION WORK PAGE... ii

DECLARATION ..iii

COPYRIGHT .. iv

ABSTRACT.. iv

ACKNOWLEDGEMENTS .. vi

DEDICATION ..vii

TABLE OF CONTENTS .. viii

List Of Tables.. xi

List Of Figures .. xi

LIST OF ABBREVIATIONS .. xiii

CHAPTER ONE INTRODUCTION... 1

 1.1 BACKGROUND .. 1

 1.2 PROBLEM STATEMENT..3

1.3 RESEARCH QUESTIONS .. 4

1.4 RESEARCH OBJECTIVES ... 5

 1.5 CONTRIBUTIONS………………………………………………………………..…...5

CHAPTER TWO LITERATURE REVIEW .. 6

 2.1 INTRODUCTION………………………………………………………………....…6

2.2 THE ARCHITECTURE OF THE WEB ... 6
2.2.1 Brief History about Web Applications ... 7

2.2.2 Client-side scripting…………………………………………………………10

2.2.3 Security Extensions………………………………………………………....10

2.2.4 Rich Internet applications……………………………………………………11

 2.3 Introduction to Web application Security Issues……………………………………..12

 2.4 Attacks………………………………...………………………………………………12

2.4.1 Authentication……………………………………………………………….13

2.4.2 Authorization………………………………………………………………...13

2.4.3 Injection flaws……………………………………………………………….13

 2.5 WEB APPLICATION VULNERABILITIES……………………………………….13

2.5.1 Injection Vulnerabilities……………………………………………………..13

2.5.2 SQL Injection………………………………………………………………..14

2.5.3 Cross-Site Scripting (XSS) …………………………………………………17

2.5.3.1 Reflected XSS…………………………………………………….19

2.5.3.2 Stored XSS………………………………………………………..20

ix

2.5.3.3 DOM-based XSS………………………………………….………20

2.5.4 Remote File Inclusion (RFI)……………...………………………20

2.5.5 Logic Vulnerabilities…………………………………………………………22

 2.6 TRADITIONAL ATTACKS………………………………………………………...23

 2.7 SECURING WEB APPLICATIONS………………………………………………..24

2.7.1 Anomaly Detection………………………………………………………….24

2.7.2 Art of Analyzing and Finding Vulnerabilities……………………………….25

1.7.2.1 Static Analysis…………………………………………………..….25

1.7.2.2 Dynamic Analysis…………………………………………….....…26

2.7.3 Vulnerability Analysis Tools………………………………………………..27

2.7.3.1 White-Box………………………………………………….……..27

1.7.3.2 Black-Box……………………………………….………...……..27

1.7.3.3 Grey-Box…………………………………….……………….......28

 2.2 OPEN SOURCE BLACK-BOX VULNERABILITY SCANNERS……… ………28

 2.3 COMMERCIAL BLACK-BOX VULNERABILITY SCANNERS……………….29

 2.4 ACADEMIC PROTOTYPES BLACK-BOX VULNERABILITY SCANNERS….31

 2.4.1 The Appraisal of Black-Box Scanner Tools ……………………………….31

 2.4.2 Design Test of Web Applications…………………………………………..31

 2.4.3 Automated Web Scanners……………………….……………………….....31

 2.4.4 Evaluating Web Vulnerability Scanners………………………………...….31

 2.4.5 Vulnerability analysis and scanners…………………………………….…..33

 2.4.6 OTHER RELATED RESEARCHES IN THE AREA………………….…..33

 2.5 White Box Approache Review……………………………………………………..42

 2.7 Analysis and Observations…………………………………………………………45

CHAPTER THREE RESEARCH METHODOLOGY………………………………..….46

 3.1 INTRODUCTION………………………………………………………….………46

 3.2 CRAWLING……………………………………………………………………..…47

 3.3 WEB CRAWLER ALGORITHM…………………………...……………………..47

 3.4 VULNERABILITY DETECTION MAIN COMPONENTS…………………….....48

 3.4.1 Crawler Module…………………………………………………………...49

 3.4.2 Attacker Module…………………………………………………………..49

 3.4.3 Parser Module……………………………………………………………..50

 3.5 GENERAL ARCHITECTURE……………………………………...……………51

 3.6 GENERAL ALGORITHM………………………………………………………..53

 3.7 DATABASE DIAGRAM……………………………………………………….....54

 3.8 IMPLEMENTATION…………….………………………………………………..55

x

 3.9 BBWAV USER INTERFACE…………………………………………….………57

 3.9.1 Main User Interface……………………………………………...….……..57

 3.9.2 New Scan……………………..…………………………………...….…….58

 3.9.3 Open Old Scan………………………….....……………………...….……..59

CHAPTER RESULT AND DISCUSSION……………………………….………..60

 4.1 INTRODUCTION60

 4.2 PROPOSED WEB APPLICATION SCANNERS……………….………….……60

 4.2.1 Netsparker Community Edition…...………………………………………..61

 4.2.2 Acunetix Web Vulnerability Scanner Free Edition………….……………..62

 4.2.3 Wapiti …………………….....………………………………………...……62

 4.3 TESTBED FOR PROPOSED WEB APPLICATION VULNERABILITY

 SCANNERS……………………………………………………...……………….63

 4.4 JOINED RESULTS………………………………………………………………63

 4.4.1 General Detecting Vulnerability Test……………………………………63

 4.4.2 False Positive Results……………………………………………………64

 4.4.3 Time Taken by Each Scanner…………………………………………....65

 4.5 DISCUSSION OF RESULTS…………………..…………………………….…...65

CHAPTER FIVE CONCLUSION AND FUTUR WORK .. 66

5.1 CONCLUSION…………………………………………………………………...66

5.2 CRAWLING……………………………………………………….……………..66

5.3 LIMITATIONS AND FUTURE WORK………………………….……………...67

REFERENCES……………………………………………………………….…………….68

Appendix A Web Crawler Implemented Code using C#...76

Appendix B Testbed Screenshots for Used Web Scanners ………………………….…….78

xi

LIST OF TABLES

Table 2.1: Most Open Source web-based application vulnerability scanners list……….…..29

Table 2.2: Most commercial web-based application vulnerability scanners list………..........30

Table 2.3: Literature review summary ……………………………………………………….34

Table 2.4: White box approaches comparison……………………………………………......44

Table 4.1: Usability Comparison for 3 scanners …………………………………………….61

Table 4.2: Number of detected Vulnerability………………………………………….……..64

Table 4.3: Number of False Positive………………………………………………………….65

Table 4.4: Time of scanning taken by each tool………………………………………..……65

LIST OF FIGURES:

Figure 1.1: Fundamental approaches to testing software applications………….….…3

Figure 1.2: Frequency of vulnerabilities detected by type for the year 2014…….…..4

Figure 2.1: Interaction between the web browser and a web server……………….....7

Figure 2.2: Web application with server and a back-end database………………..…8

Figure 2.3: HTML login form………………………………………………………..15

Figure 2.4: HTML login form with malicious input…………………………………16

Figure 2.5: Default output of login page……………………………………………..17

Figure 2.6: XSS attack……………………………………………………………….19

Figure 2.7: Remote file inclusion attack……………………………………………..22

Figure 3.1: Scan phases……………………………………………………………....46

Figure 3.2: Crawler algorithm……………………………………………………......48

Figure 3.3: Parser module…………………………………………………….……...50

Figure 3.4: Use case diagram……………………………………………….…....…..51

Figure 3.5: The general architecture of the proposed solution……………….………52

Figure 3.6: General algorithm for indentifying and evaluating web application

vulnerabilies……………………………………………………………………….…53

Figure 3.7: Database diagram……………………………………………….………..54

Figure 3.8: BBWAV main interface………………………………….………….…...57

Figure 3.9: Scan target and configuration……………………………….……………58

Figure 3.10: Scan framework……………………………..…………….…………….58

Figure 3.11: Open an old scan………………………………………………………..59

Figure 4.1: illustrated graph of detected Vulnerability……………………………….64

Figure A: BBWAV test screenshot …………………………………………..………78

xii

Figure B: Netsparker test screenshot ………………………….……………………..78

Figure C: Wapiti test screenshot ………………………………………………….…79

Figure D: Acunetix test screenshot ………………………….………………………79

Figure E: Wapiti report screenshot ……………………………………………...…..80

xiii

LIST OF ABBREVIATIONS

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

URL Uniform Resource Locator

IP Internet Protocol

TCP Transmission Control Protocol

SSL Secure Sockets Layer

XSS Cross-Site Scripting

SQL Structured Query Language

RFI Remote File Inclusion

DOM Document Object Model

XML Extensible Markup Language

AJAX Asynchronous JavaScript and XML

API Application Program Interface

CGI Computer-Generated Imagery

GUI Graphical User Interface

PHP Personal Home Page

ASP Active Server Page

WWW World Wide Web

1

CHAPTER ONE

 INTRODUCTION

1.1 Background

 The web has turned into a critical piece of our lives. The present work is

consistently collaborated with many of custom-made web applications that have been

actualized utilizing a mixed bag of distinctive advancements. The extremely varied

nature of the web with its distinctive implementation languages, encoding models,

browsers and scripting environments makes it troublesome web application

developers to legitimately secure their applications and stay up-to-date with emerging

threats and, newfound attacks.

As we know of our lives; data began move to web applications, hackers have

proceed to concentrate their effort to web applications. In SEPT 2015, more than 5

million fingerprints of United States federal employees stole by hackers (OPM, 2015).

In 2014, more than 40 million customer credit cards stole by hackers from Target

Corporation stores (SEC, 2015). In 2009, 100 million customer credit cards stole by

hackers from Heartland Payment Systems (FBI, 2011). The face of the similarity in

these cases is that hackers exploited vulnerabilities on the web applications to steal

databases and information.

As increasingly of our lives and data circulate to web applications, hackers

have shifted their recognition to web applications. In 2011, hackers thieved more than

1 million usernames and passwords from Sony (OPM, 2015). In 2007, hackers stole

forty five million client credit cards from TJ Maxx (OPM, 2015). In 2012, hackers

stole 24,000 Bitcoins from BitFloor, a major Bitcoin exchange (Jerry, 2013). What all

of those instances have in not unusual is that hackers exploited vulnerabilities in a web

application to steal both of usernames and passwords, credit cards, or Bitcoins.

10 years prior, applications were regularly deployed in closed client-server or

stand-alone scenarios. Around then, testing and securing an application was a simpler

task than today, where a web application can be accessed to by millions of

unidentified Internet users. As more security critical applications, for example,

governmental, banking systems exchange interfaces, and e-commerce platforms, are

2

turning out to be accessible via the web, the act of web application security and

defense has been obtaining significance.

Several web application security vulnerabilities result from universal input

validation problems. Cases of such vulnerabilities are SQL injection and Cross-Site

Scripting (XSS) (Deven, 2010).

The automated test for software has become an essential matter for different

software engineering methodologies. Software companies oftentimes make a test of

their products. In that cases; the company who make the test maybe have to test

software without any access to the source code.

In this terrible situation. A focus on new techniques is needed to make web

applications more secure from attacks. We should implement new tools in order to

detect the vulnerabilities.

Regardless of the many of web vulnerabilities are easy to know and to avoid,

many web developers are, unluckily, not security-aware. Therefore, a result, there

exist a big number of vulnerable applications and web sites on the web.

As mentioned in Figure 1.1, existing three essential ways to deal with testing web

based applications for the presence bugs and vulnerabilities:

White-box testing, the application source code is dissected trying to find damaged or

vulnerable lines of code. This operation is regularly integrated into the development

process by creating add-on tools for common development environments (Deven et

al., 2015).

Black-box testing, the source code is not analyzed direct. Rather, special input

test cases are generated and sent to the application. At that point, the results returned

by the application are examined for unexpected behavior that indicates errors or

vulnerabilities (Nidhra et al., 2012).

Grey-box testing is a combination of black-box testing and white-box testing. The

objective of this testing is to find the defects if any due to improper structure or

improper usage of applications (Kicillof et al., 2007).

3

1.2 Problem Statement

As the software industry pays increasing attention to web application security,

various black box web security scanners have been developed, and web security

became today the most important aspect of securing the enterprise and should be a

need in any association, as described in Figure 1.2.

The existing status of web security, however, has failed to deliver on the

promise of intrusion detection. Many tools, as business and open source have been

implemented for identifying web application vulnerabilities, called web weakness

scanner. Many studies have focused on evaluating web vulnerability scanners by

comparing the vulnerability coverage, precision, recall, and time complexity.

Figure 1.1: Fundamental approaches to testing software applications (Chen et al., 2010)

4

Figure 1.2: Frequency of vulnerabilities detected by type for the year 2014

(Cenzic: www.trustwave.com)

In this dissertation, I present BBWAV (B lack Box for Web Application

Vulnerabilities), an advanced black-box automatically analyses and test web-based

applications for SQL Injection, XSS and more web vulnerabilities types. BBWAV

addresses several of the aforementioned fundamental challenges to anomaly detection

using Crawler technique. Finally, a novel framework for developing web applications

that are secure by construction against many common classes of attacks is presented.

1.3 Research Questions

1. How important is the usage of vulnerability scanners to enhance the security of

web applications?

2. What are the approved phases to implement Black-Box web vulnerability

scanner techniques based on web crawler?

3. How do we check capabilities and effectiveness of the proposal black box tool,

depending on real-world test?

0 5 10 15 20 25 30 35 40

INFORMATION LEAKAG

CROSS-SITE SCRIPTING

SQL INJECTION

SESSION MANAGEMENT

AUTHENTICATION AND

AUTHORIZATION

CROSS-SITE REQUEST

FORGERY

OTHER

 % % % % % % % % %

5

1.4 Research Objectives

 The specific research objectives of this thesis are as follow:

1. Investigate into available vulnerabilities scanning tools.

2. Implement a web Black-Box vulnerability scanner based on web crawler

which allow scan of common vulnerabilities.

3. Test the proposal black box tool with a real web application, and compare it

with existing tools.

1.5 Contributions

The specific contributions of this work as bellow:

- Providing a precise scan of much popular vulnerability like, SQL injection,

XSS (Cross-site scripting) and RFI (Remote File Inclusion).

- BBWAV tool Adapted with applications that utilize modern web technologies

such as, SOAP, HTML5 and AJAX and make it able to crawling, interpreting

and scanning those applications.

- After finish the scan mode, BBWAV will provide us scanning history storage

and a detailed report about the scanning process and provides all of the

vulnerable links and target also provide a small notes for each vulnerable

found and how to fix it.

- The present BBWAV offers two modes of scan such as:

 The normal mode which provides a scan for the whole block of

parameters at a time.

 Deep Scan mode which provides scan for only one block of parameters

at a time.

- BBWAV is an open source tool for academic and research purpose.

6

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Most popular attacks on the web applications comprise injection attacks and

specially, web applications connected to an SQL database, and other injection attacks

called Cross-site scripting or XSS code injection attacks (Flash, JavaScript, etc.,

carried out through so-called). These attacks mostly correspond to the same type of

vulnerability exploitation.

In these years web application security become a popular research subject. Input

validation attacks like SQL injection and cross-site investigated by a large body of

existing.

This section show the related work of tools that’s detecting and preventing the

most of vulnerabilities is being researched.

A lot of researchers have present obligation in their researches to assist explain

limitations on web application security and recommended approaches to improve the

security of web applications. Many tests and limitations were applied on many black-

box scanners, such scanner have been discovered and discussed in details.

2.2 The Architecture of the Web

The web is a client-server network architecture in which web clients and web

servers exchange information using the Hypertext Transfer Protocol (HTTP) over

TCP/IP. A web client may be a web browser such as Mozilla Firefox or Microsoft

Internet Explorer, or an automated “spider” that traverses the web to, for instance,

build a search engine index. A web server hosts a set of web resources organized as a

tree, each of which is identified by at least one path from the web server’s directory

root; popular examples include the Apache HTTP Daemon or Microsoft Internet

Information Services. One or more affiliated web servers comprise a web site. Web

resources may be static text files, Hypertext Markup Language (HTML) documents,

media files such as images or music, client-side code, dynamic scripts comprising a

7

web application that may output any of the above or any of a number of other

possibilities (Hassan, A. E. May, 2002).

A typical HTTP session proceeds as follows. A web client requests a resource

from a web server by issuing one of a number of HTTP client commands. The request

specifies the path to the resource, various information conta ined in request headers,

and a set of parameters in key-value format. The web server processes the request and

returns a response containing a status code indicating the result of the request. The

request may be successful, in which case a response body is returned containing the

requested resource. Alternatively, the server may direct the browser to issue a

subsequent request to another resource or indicate that an error has occurred. Other

resources associated with the original resource, such as embedded images or client-

side scripts, may be subsequently requested, not necessarily from the same web

server.

2.2.1 Brief History about Web Applications

In 1989, The World Wide Web (WWW) has created as an instrument of

sharing information for the research organization CERN. At first as a way to share

simple hyper linked textual documents over the budding Internet fast diffused in

popularity at this period (James, J., et al, 2015).

Figure 2.1: Interaction between the web browser and a web server.

(1) Web browser makes an HTTP request to the webserver.

(2) Web server sends the web browser an HTTP response including the HTML of the

web page.

(1) HTTP request

(2) HTTP response

8

The essence of the web has stayed relatively the same Couple of years; the

web browser (run by the user) connects to the web server by utilizing the HTTP

(Hypertext Transfer Protocol. After that the web server sends a response, usually in

the form of HTML page (R. Berjon et al., 2014). After this, the web browser analyzes

the existing HTML page to create a graphical web page which will be presented to the

user.

Figure 2.1 present the interaction between the web browser and the web server.

Where at (1), the web browser will make an HTTP request to the web server, to

request a resource. After that, the web server will respond, such as what is shown in

(2), with an HTTP response which contains the HTML of the requested web page.

With the development of the web, web sites began moving from static.

Developers figure out that the response of HTML received by the client could

transfer to dynamic that mean, the content of the HTML response could differ

programmatically. This revolution of developing was the reason of web applications

appearance. Web applications increased the popularity of: news sites, web-based

email clients, and e-commerce.

Figure 2.2 present a web application with a back-end SQL database.

When web application receives an HTTP request by the web browser, shown

in step 1, the web application’s server-side will start to run. Then, as shown in step 2,
the server-side code can make one or more request to the SQL database, when run the

queries

Figure 2.2: Web application with server and a back-end database.

(1)The web browser makes an HTTP request to the web application.

(2)The server can issue one or many SQL queries to the back-end SQL database, and

returns the data to the server-side such as what is shown in step 3. Finally, the web

(1) HTTP request

(3) Data return

(2) SQL queries

(4) HTTP response

9

application finishes sends an HTTP response and processing the request with an

HTML web page to the web browser such as what is shown in step 4.

The HTTP mechanism is, by design, stateless: Each HTTP request that the

web server receives is independent of any other request. It is difficult to build an

interactive application on top of a stateless protocol, thus a standard was developed to

add state to the HTTP protocol. This standard added the cookie mechanism to the

HTTP layer.

In this method, a web server can ask the web browser to set a cookie, then, in

subsequent requests, the web browser will include the cookie. Therefore, a web server

or web application can link the requests into a session based on the common cookie

and thus develop state-aware web applications.

After the web applications coming, the server-side code would return an HTML page

that was statically rendered and displayed to the user. To change to content on the

page or otherwise interact with the web application, the browser should perform

another HTTP request and receive a response based on a link the user clicked or a

form the user submitted.

In 1997, Brendan Eich. A programmer at Netscape, created a client-side

scripting language called JavaScript. To manipulate the web content, the user’s web

browser realized an interpreter for that scripting language. Actually, web developers

could programmatically change the content on the web page with JavaScript without

making a request to the web server. The final linchpin which enabled web applications

to truly rival traditional applications was the creation and standardization of the

XMLHttpRequest JavaScript API (A. Van et al., 2006). This API allowed the client-

side JavaScript code to make asynchronous requests to the web application and then

update the content of the web page according to the response from the web

application. Combined together, these web application development technologies

came to be known as AJAX (J. J.Garrett, 2005), which rivaled traditional desktop

applications in functionality.

In this chapter we will use this architecture of a web application to debate the

aspects of web applications security. As well needed in this dissertation, we will

explain other details and complexities of web applications.

10

2.2.2 Client-side scripting

Client-side scripting languages such as JavaScript and, later, ECMAScript,

gradually became popular as the complexity of the web increased. Executing within

the web browser, client-side scripts allow web developers to interact with the

Document Object Model (DOM), performing actions such as automatically redirecting

the browser to new resources, accessing the browser history, opening new windows,

or validating HTML form field content prior to submitting a request to the server.

The presence of the XmlHttpRequest API and the popularization of

Asynchronous JavaScript and XML (AJAX), client-side scripting has assumed a

central role in the development of modern web applications. Using this API, client-

side scripts can issue requests that asynchronously update an HTML document within

the web browser without initiating a full HTTP resource request cycle to refresh the

entire document. This has significantly enhanced the appearance and functionality of

web applications, to the point that AJAX-enabled applications have since been

collectively referred to as “Web 2.0.” (Tang, J. D., & Hom, K, 2015).

2.2.3 Security Extensions

As HTTP has matured, several extensions intended to bolster its security have

been adopted. HTTPS is a combination of HTTP transmitted over a connection that is

encrypted at the network stream level using the Secure Sockets Layer (SSL) or

Transport Layer Security (TLS) standards. Designed to provide end-to-end security to

prevent intermediary attackers from observing HTTP communication in transit, it

suffers from the drawback that it does not prevent the exploitation of vulnerabilities at

either the client or the server, where the vast majority of web attacks occur. In

addition, several client authentication schemes have been introduced, but these have

also proven ineffective at preventing most classes of web attacks (Popov, A, 2015).

Perhaps the most important, and controversial, HTTP security feature is the

same-origin policy. First introduced by the Netscape Navigator 2.0 browser, the same-

origin policy dictates that client-side scripts executing within the browser may not

access resources from other origins, where “origin” is defined to be a DNS domain

name, protocol, and network port triplet. This coarse-grained security policy is

intended to ensure that only client-side code that has been issued by the web site

administrators or developers should execute. This policy has attracted much criticism

11

from developers who find it too restrictive. Yet, bypassing the same-origin policy is

the basis of virtually all web client vulnerability classes (Herzberg. A, 2012).

Therefore, several proposals to increase the granularity of the same-origin

policy have been introduced. For instance, Flash implements an extension to the same-

origin policy with its crossdomain.xml specification. These files enable a web server

administrator to explicitly declare a set of trusted domains, as opposed to the implicit

policy specified by same-origin. Each of these trusted domains can serve Flash

applications to clients that can access resources located on that server. The client-side

Flash runtime is responsible for enforcing the declared policy. Crossdomain.xml has

the effect of relaxing the same-origin policy, granting greater flexibility to flash

applications. Concerns have been raised, however, over the difficulty of accurately

modeling complex trust relationships. Also, crossdomain.xml is specific to flash

applications and does not mitigate threats posed by other types of client-side code.

Other refinements of the same-origin policy have recently been proposed, most

notably Mozilla’s Site Security Policy (SSP). SSP is intended to address several

vulnerability classes arising from the same-origin policy by allowing fine-grained

policies to be defined in HTTP headers. These policies enable web server

administrators to specify a whitelist of domains a browser should allow as legitimate

sources of client-side scripts associated with a specific resource, as well as control

how a web server handles cross-site requests. Such proposals are at an early stage at

the time of writing, however, and it is unclear what their ultimate effectiveness will

be.

Unfortunately, existing web security mechanisms have proven inadequate to

the task of protecting web clients and servers from exploitation. As a consequence, the

web is plagued not only by the traditional set of vulnerability classes, but, in addition,

a novel set of attacks which are not as well understood and for which defense

mechanisms are not as advanced.

2.2.4 Rich Internet applications

Another significant component of the modern web is rich Internet applications

(RIA), such as Adobe Flash or Microsoft Silverlight. In the context of the web, RIA

frameworks are used to implement complex client-side applications that display

advertisements, stream video, or entirely supplant the HTML document, providing a

media-rich, highly interactive environment that could not otherwise be realized. These

12

frameworks typically are developed in modern, high- level languages; for instance,

Flash applications are written in a variant of ECMAScript called ActionScript, and

Silverlight applications can be written in any language supported by the .NET

runtime. These applications are compiled down to bytecode, optionally packaged with

media, and executed within a virtual machine runtime available as a plugin for most

web browsers (P. Grazie, 2006).

2.3 Introduction to Web application Security Issues

A web application resides on web server and can be accessed over a network

by an authorized user. Since they reside on the server and publicly available on the

internet they can be updated and modified at any time. Traditionally hackers have

been focused at network and operating system level, but current trend is leaning

towards web application because various intrusion detection and defense mechanism

constraints the penetration and hackers are looking for another way to breach the

security infrastructure. Currently the gaping security loophole in web application is

being exploited by hackers worldwide.

The reported instances of web application attacks shows maximum hits

happened to financial and educational areas. Symantec security report says 69% of

vulnerabilities in internet are web application vulnerabilities. As the web application

vulnerabilities are very much precautions, are to be taken carefully right from the

design.

Integration of security measures throughout the lifecycle need to be done in

order to plug the loopholes. The various research activities of leading organizations

and individuals also prove that web application vulnerabilities are serious issues and

there is a necessity to incorporate security in the software development phase (Shema,

M, 2012).

2.4 Attacks

Research community and media have reported various types of attacks that can

happen to the web application. These attacks are possible mainly due to the loopholes

like weak authentication, improper authorization, flexibility in code/string injection,

buffer accessibility etc. The sections below discuss various threats to web application

security (Kieyzun, A., P. J. Guo, et al. 2009).

13

2.4.1 Authentication

This vulnerability exists in so many systems as they will allow the use of weak

passwords or cryptographic keys, and users will often choose easy to guess passwords,

possibly found in a dictionary. Some systems do not have to authenticate the user

before they could access the system. Another scenario that strengthens this

vulnerability is that many systems support automated tools which generate username

and password (Kieyzun, A., P. J. Guo, et al. 2009).

2.4.2 Authorization

Insufficient Authorization: Insufficient Authorization is when a web site

permits access to sensitive content or functionality that should require increased

access control restrictions (Kieyzun, A., P. J. Guo, et al. 2009).

2.4.3 Injection flaws

Injection vulnerability is the weakness of an application whereby a malicious

user input sabotages the otherwise genuine use of the system. The different kinds of

injection flaws are Cross site scripting exp, Sql Injection targeted at Database content,

command injection exploited through OS shell etc (Kieyzun, A., P. Guo, et al. 2009).

2.5 Web Application Vulnerabilities

There is no difference in security properties between web application and any

other software system: integrity of the data, availability of the application, and

confidentially of information. In this work, we will concentrate on attacks that that

afflict the integrity and confidentially of the web application’s data (Johari, R. 2012).

2.5.1 Injection Vulnerabilities

Injection Vulnerabilities happen when the attacker is able to control or impact

the value of parameters used as part of the server query, language, or command. If the

attacker can play with query and change the semantics, language, command or, and

this manipulation Affect the security of the application, then that is an injection

vulnerability (Johari, R. 2012).

Existing a lot of kinds of injection vulnerabilities in web applications, and

every type of injection depend on the query and command, or language that is being

14

injected. These contain OS commands, SQL queries, HTML responses, HTTP

headers, email headers, and many other types. Next we will concentrate on two of the

most popular and prevalent types of injection vulnerabilities in web applications such

as Cross-Site Scripting (XSS) and SQL injection (Johari, R. 2012).

2.5.2 SQL Injection

SQL injection is a type of attacks that happen when an application does not

validate the input from users and give the attackers chance to impact the SQL query.

This type of attacks generally happen when the web page produces SQL statements

based on user inputs to call data from database servers located on the back of web

applications (Mirza, 2012).

SQL injection can occur when data submitted to a web server is used as an argument

to a SQL query without proper sanitization. In the simplest type of inject ion, an

argument to a query is allowed to contain the argument delimiter. The effect is to

terminate the argument, allowing the attacker to specify the rest of the query. In the

worst case, this can lead to enabling an attacker to execute arbitrary SQL queries

against the database.

Clearly, SQL injection attacks can allow an attacker to obtain unauthorized access

to data. Since, however, SQL databases often store authentication credentials, SQL

injection attacks are often used to bypass a web application’s authentication scheme

(Johari, R. 2012).

 SQL Injection Attack Example

The root cause of SQL injection vulnerabilities is that the server-side code of

the

web application, to issue an SQL query to the SQL database, concatenates strings

together. This format allows the queries to be parameterized, and therefore the server-

side code can be more general.

Consider the simple authentication form shown in Figure 2.3.

15

Figure 2.3: HTML login form

Now consider the php login script which takes input parameters and checks for

authentication as show above:

<?php

$user=$_POST['Username'];

 $pass=$_POST['Password'];

$sql="SELECT * FROM $tbl_name WHERE username='$user' and

password='$pass'";

$result=mysql_query($sql);

$count=mysql_num_rows($result);

if($count==0){

header("location:login.html");

}

else{

$row = mysql_fetch_array($result) or die(mysql_error());

echo "Welcome, " . $row['username'] . " \n";

} ?>

Imagine sending the following user name and password (Figure 2.3): ‘OR’ 1=1

Login page

Login Cancel

User Name

USERNAME :

PASSWORD :

16

Figure 2.4: HTML login form with malicious input

Inserting above statements into the form will result in the query being extended with

‘OR’ statement, resulting in a final query of:

SELECT * FROM customers WHERE username = '' OR 1 = 1 AND password = '' OR

1 = 1;

Because of the OR statement in the SQL query, the check for username & password

is insignificant as 1 does equal 1, thus the query will return TRUE, resulting in a

positive login as show in below browser output (Figure 2.4). Similarly, imagine

sending the following username: ‘OR 1=1 #.

In this example, # is used to begin a single- line comment, effectively terminating the

Query from that point. This has been tested successfully with MySQL. Inserting the

above into the form will result in a final query of the form:

SELECT * FROM customers WHERE username = '' OR 1 = 1;

This query results in a successful authentication attempt, regardless of the password.

This particular attack is frequently used to steal accounts. Thus, by sending a

malformed username, you can manage to log in without having a valid account.

Login page

Login Cancel

‘OR’ 1=1

‘OR’ 1=1

USERNAME :

PASSWORD :

17

Figure 2.5: Default output of login page

Although Figure 2.5 displayed a situation where an attacker could possibly get access

to a lot of information they shouldn't have, the attacks can be a lot worse.

2.5.3 Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) is one of the most common web application

vulnerabilities. Many XSS attacks happen because vulnerable applications fail to

sanitize malicious input at either server side or browser side, allowing them to be

injected into response pages. By altering the original page structures, the injected code

is able to achieve malicious intentions in victim browsers.

This scripting code is executed in the browser and used to transmit sensible data to the

attacker or other part. Actually, most of approaches try to block XSS on the server

side by checking and modifying the data that is transmitted between the web

application and the user (Johari, R. 2012).

 XSS Attack Example

Cross-Site Scripting (XSS) vulnerabilities are similar in spirit to SQL injection

vulnerabilities. Instead of an injection into a SQL query, XSS vulnerabilities are

User Page

Welcome ,JHON

18

injections into the HTML output that the web application generates. XSS

vulnerabilities are frequently in the top three of reported vulnerabilities in all software

systems.

Now consider an example of a simple message board:

<form action="message.php" method="POST">>

<input type="text" name="message">

<input type="submit">

</form>

<?php

if (isset($_POST['message']))

{

echo $_POST['message'];

} ?>

Now if the attacker sends following message:

<SCRIPT> alert(“XSS”); </SCRIPT>

Then if the php script is executed then a popup window will appear as shown in

Figure 2.6.

Similarly if the attacker enters following message:

<script>

document.location="http://evil.com/steal_cookies.php?cookie=" +

document.cookie

</script>

The next user who visits the message board with JavaScript is redirected to evil.com

& any cookies associated with the current site are included in the query string and sent

to steal_cookies.php. XSS attacks may be conducted without using <script></script>

tags. Other tags will do exactly the same thing, for example:

19

Figure 2.6: XSS attack

<body onload=alert('XSS')>

<b onmouseover=alert('Wufff!')>click me!

<img src="http://evil.com/steal_cookies.php"

onerror=alert(document.cookie);>

Cross-site scripting vulnerability exists if the user input is not properly filtered and

escaped. Because the risk exists only when you output tainted, un-escaped data, you

can simply make sure that you filter input and escape output. Since it depends upon a

developer to determine what kind of filtering should be done on incoming data.

2.5.3.1 Reflected XSS

Traditionally, XSS vulnerabilities reside in the process when the server-side

code preparing html responses to users. This is different from the DOM-based XSS

after the advent of web 2.0. Traditional XSS vulnerability can be classified as

reflected XSS and stored XSS. A reflected XSS vulnerability allows users to inject

malicious input which can be reflected back immediately in the response. It is

considered as “non-persistent” (Johari, R. 2012).

20

2.5.3.2 Stored XSS

Different from reflected XSS, stored XSS can accept a user's input and keep it

on the web page, and it is considered as “persistent”. In the reflected XSS attack does

not require attackers to use phishing techniques to lure victims to visit another

website, and the XSS vector is injected onto the web page permanently.

A typical scenario of a stored XSS attack can be:

There is a blog application allowing readers to post their messages. An

attacker may post some malformed content for the value of the regular message title

and body. If the website cannot validate the user inputs, malicious scripts will be

injected into the attacker’s posting permanently, which can be viewed by others.

Whenever the posting page is visited, the malicious scripts will be run in the victim

browsers (Johari, R. 2012).

2.5.3.3 DOM-based XSS

Apart from traditional XSS attacks, including reflected XSS attacks and stored

XSS attacks, another XSS attack type is called DOM-based XSS. Unlike traditional

XSS attacks which rely on having malicious payloads embedded in the reflected

pages, DOM-based XSS attacks modify the DOM environment in the victim

browsers, without changing the actual HTML response contents. DOM, which is the

abbreviation for Document Object Model, is a convention representing objects in

HTML, XHTML, or XML documents. It provides interfaces for Java scripts to

manage the structure and attributes of page contents. For example, the

“getElementById” method of the Document object can return a reference to the first

object having the specified id in the web page; the “host” attribute of the Location

object has the information of the current host name and port number (Johari, R. 2012).

2.5.4 Remote File Inclusion (RFI)

Remote File Inclusion (RFI) is a type of vulnerability most often found on

websites. It allows an attacker to include a remote file, usually through a script on the

server. In PHP the main cause is due to the use of include and require statements. File

inclusion is mainly utilized for packaging common code into separate files that are

later referenced by main application modules. When a web application references an

include file, the code in this file may be executed implicitly or explicitly by calling

specific procedures.

21

The key to success of an RFI attack is that the hacker must be able to send the

URL of the remote file into your script, disguised as innocent data [4]. In order to

make RFI successful, hacker just have to do is find/guess the variables by which a

script accepts incoming data, make note of the variable names and then start sending

ordinary requests to the script of the type it normally expects, but with one difference:

the values of the variables it sends are all the URL of the remote script they want your

script to execute (Johari, R. 2012).

An attacker can use RFI for:

 Code execution on the web server.

 Code execution on the client-side such as JavaScript which can lead to other

attacks such as cross site scripting (XSS).

 Denial of Service (DoS).

 Data Theft/Manipulation.

 RFI Attack Example

Consider the following PHP script (rfi.php) which takes user input using GET method

and includes it:

<?php

$sample=$_GET['variable_1'];

include $sample; ?>

Now consider the following GET request:

http://localhost:8888/hello.php?variable_1=http://evilsite.com/Evilscript.txt

Suppose the Evilscript.txt contains following code:

<?php

$output = shell_exec('ls -lart');

echo "<pre>$output</pre>"; ?>

(P. Grazie, 2006).

22

Above GET request will execute shell command contained in Evilscript.txt and print

list of sorted files by time modified along with encountered subdirectories. Following

output (Figure 2.7) will show to the attacker.

2.5.5 Logic Vulnerabilities

Logic vulnerabilities are a type of vulnerabilities that come when the

implemented logic of the web application does not correspond with the developer’s

meant logic of the web application. As example an ecommerce application, if the user

have the ability to submit a coupon many times, till the price of the product be zero.

We can take a financial services web application as another example which haply

sends secret financial reports to forbidden users.

Any web application can affect by injection vulnerability, and the repair of the

vulnerability will be the same, in any case of the underlying web application. And vice

versa, logic vulnerabilities are unique and specific to the web application. Similar

Figure 2.7: Remote file inclusion attack

23

behavior that shows in two web applications may be logic vulnerability in the first but

security vulnerability in the second web application. Reflect the behavior of an

unauthenticated user changing the content of a web page. In majority of applications,

this would appear as vulnerability. If the web application code is functioning correctly

the special feature of logic vulnerabilities that mean, the attacker is not able to change

the execution of the code or execute code of her choosing.

So, is very difficult to detect these vulnerabilities with automated method, as the

automated tool must reverse engineer the developer’s intended security model (Sun,

F., Xu, L, 2014).

2.6 Traditional Attacks

In addition to the aforementioned attacks, web clients and servers have also

proven susceptible to more traditional types of vulnerabilities. For completeness, we

briefly enumerate them in the following.

Both web clients and web servers contain vulnerabilities allowing for

successful control flow hijacking attacks. This class of attack generically refers to any

attack that allows an attacker to assume control over a program. Well-known

examples of this include stackbased buffer overflows that overwrite a saved

instruction pointer or otherwise control stack frames; heap-based buffer overflows that

enable an attacker-controlled memory overwrite; format string vulnerabilities,

enabling an attacker to enumerate memory and perform memory overwrites; and

generic pointer overwrites, enabling an attacker to control the destination of a memory

write or the target of an indirect function call. Vulnerabilities that allow this class of

attack are extremely serious in that an attacker can perform arbitrary actions with the

privilege level of the exploited program. Common actions include the installation of

malware, or the exposure of confidential data.

Web clients and servers have also been vulnerable to command injection

attacks. In particular, web applications that execute external programs during request

processing without properly sanitizing any client-supplied arguments have proven to

be a popular attack vector. Similar to the previous case, these vulnerabilities are

considered to be serious, as arbitrary actions can be performed.

A final example of the traditional attacks that have also manifested themselves

in the web context is path traversal. Path traversal attacks typically exploit a

vulnerability in a web server or application that allows an attacker to specify a request

24

for a resource that should not be served. Examples of this attack include escaping a

web server document root by accessing its parent directory, or supplying to a web

application an absolute path for a file to download instead of an expected relative path

(Mirza Mohammed, 2012).

2.7 Securing Web Applications

Due to their popularity, is very critical to ensuring that web applications are

secure. Security errors in a web application can give permission to the attacker

unprecedented access to sensible and secret data.

It is known that securing web applications is important. Specially, should

concentrate on the needs of the users by securing their data, and secured when surfing

the web. To applicate this, we need to make the necessary steps to develop an

automated tools that can automatically detect security vulnerabilities. These tools can

be used by any user even with no security experience, thus making developers on a

level playing field with the attackers.

Existing many ways to secure web applications; one of approaches is to detect

attacks as they happen and block the attack traffic. Other approach is to build a secure

web application without vulnerabilities to entire classes of security vulnerabilities.

Anyways the approach we tried to focus in the majority of this dissertation in

automated tools that automatically detect vulnerabilities in web applications (Mirza

Mohammed, 2012).

2.7.1 Anomaly Detection

The right way to turn web applications more secure is to have tools and

approaches that focus on attacks against web applications in the incoming web traffic

(W. Robertson, 2009). In this part there exist different approaches.

The anomaly detection systems are the good way for blocking anonymous exploits

versus the web application. However, the success of anomaly detection depends on the

model creation of the web application and the existence of extensive attack-free

traffic. Practically, not easy to automatically create extensive attack-free traffic.

The modern web application able to utilize anomaly detection systems in production

environments as a defense-in-depth approach (Mirza Mohammed, 2012).

25

2.7.2 Art of Analyzing and Finding Vulnerabilities

We can define vulnerability analysis as the art of detecting and finding

vulnerabilities in software. The concept is to find and discover vulnerabilities even

before the deployment of application or before an attacker can detect the vulnerability.

When the user manually analyzes the web application for vulnerabilities, we can call

this Manual vulnerability analysis as pretesting,

Vulnerability scanner tools are automated to find vulnerabilities in applications.

The core objective of this type of tools is to discover all probable

vulnerabilities in the application. The main idea is to improve software that can

encapsulate a user security expert’s knowledge.

The automated vulnerability analysis tools can be used against many types of

applications. Then, they are not expensive than recruit a team of expert users.

We can categorize Vulnerability scanner tools on what information of the web

application they use.

In practice, identifying security vulnerabilities generally includes many of techniques

for the analysis of software, each of which may be classified along several axes: static

or dynamic, white-box or black-box, and manual or automated (Mirza Mohammed,

2012).

2.7.2.1 Static Analysis

 Static analysis is performed offline on either source code or directly on an

executable image. Because of the offline nature of static analysis, such techniques are

by necessity considered white-box, where white box refers to the ability of the

technique to directly analyze the code or dynamic state of the software under test. This

is as opposed to black box approaches, which are restricted to providing inputs to the

software and observing the external results; as the name suggests, these techniques

approach the software under test as a “black box” security analysis examine the source

code or executable image of the software under test in order to identify potential

vulnerabilities. Code auditing has emerged as a particularly effective means of

discovering software vulnerabilities, and is widely practiced by both industry and

various government agencies. Nevertheless, the efficacy of manual techniques relies

directly on the competency of the security analysts themselves, and the fallibility of

these analysts as well as the increasing complexity of software that must be analyzed

26

has prompted investigation into powerful automated techniques for discovering

software vulnerabilities (Akrout. R, 2014).

2.7.2.2 Dynamic Analysis

Dynamic analysis operates by observing the software under test as it executes.

During execution, if an input causes or could potentially cause the program to enter a

state that would violate a defined security policy, the analyzer reports the failure of the

software to prevent itself from entering such a state as a vulnerability. Similar to static

techniques, dynamic analysis approaches can be classified as either white-box or

black-box. In the former case, the concrete execution states for the software under test

with a given input are directly known, either by dynamically tracing the target

program in a native environment or by leveraging a virtualized environment. In the

latter case, a test driver supplies a variety of inputs to the software under test and

observes the external results of the processing of these inputs. If the program exhibits

behavior that is consistent with a security violation, a vulnerability is reported.

Examples of both manual and automated dynamic analysis techniques exist.

Manual dynamic analysis is more generally termed “penetration testing,” in which

teams of skilled security analysts attempt to “penetrate” the security defenses of a

computer network or system. In the case of software vulnerability analysis, this takes

the form of demonstrating security vulnerabilities by attempting to bypass checks on

program input that enforce a defined security policy.

Dynamic analysis, in contrast to static techniques, is considered precise in that

no abstraction is introduced into the analysis. Instead, at a minimum, the inp ut that

caused the program to violate a defined security policy is directly known; in the case

of white box dynamic analysis, the exact set of program checks that allowed the

program to enter the security-critical state are known. The major disadvantage,

however, of dynamic analysis is its reliance on the quality of the set of inputs used.

Inputs that are not representative of real-world usage of the software under test result

in a lack of testing coverage of the software and, as a consequence, significantly

degraded usefulness of the results. Regardless, dynamic analysis has gained in

popularity due to the relative efficiency and precision of the approach.

The various avoidance techniques described above have proven effective at

discovering software vulnerabilities, and are generally prescribed as elements of

secure software development best practices. In particular, automated static and

27

dynamic analysis techniques have made dramatic strides in the past decade, and

continue to improve. Regardless, a common drawback to all avoidance approaches is

that of completeness (Akrout. R, 2014).

2.7.3 Vulnerability Analysis Tools

Vulnerability analysis tools are automated approaches to find vulnerabilities in

software. The goal of this type of software is to find all possible vulnerabilities in an

application. The core idea is to develop software that can encapsulate a human

security expert’s knowledge.

Vulnerability analysis tools can be classified based on what information o f the web

application they use (Akrout. R, 2014).

2.7.3.1 White Box

 A white box vulnerability analysis tool looks at the source code of the web

application to find vulnerabilities. And can discover all potential program paths

throughout the application by testing the source code of this web application. This

enables a white-box tool to potentially find vulnerabilities along all program paths.

Typically approaches leverage ideas and techniques from the program analysis and

static analysis communities to find vulnerabilities (Akram, M, 2015).

2.7.3.2 Black Box

 In comparison to white box tools, black box vulnerability scanner tools

assume no knowledge of the source-code of the web application. Instead of using the

source code, black box tools interact with the web application being tested just as a

user with a web browser. Specifically, means that the black box tools issue HTTP

requests to the web application and receive HTTP responses containing HTML. These

HTML pages tell the black-box tool how to generate new HTTP requests to the

application.

Black-box tools first will crawl the web application looking for all possible injection

vectors into the web application. An injection vector is any way that an attacker can

feed input into the web application. In practice, web application injection vectors are:

URL parameters, HTML form parameters, HTTP cookies, HTTP headers, URL path,

and so on.

28

Once the black-box tool has enumerated all possible injection vectors in the

application, the next step is to give the web application input which is intended to

trigger or expose a vulnerability in the web application. This process is typically

called fuzzing.

The specifics of choosing which injection vectors to fuzz and when are specific to

each black-box tool.

Finally, the black-box tool will analyze the HTML and HTTP response to the

fuzzing attempts in order to tell if the attempt was successful. If it was, the black-box

tool will report it as vulnerability (Akram, M, 2015).

2.7.3.3 Grey Box

 As the name proposes, grey box tools are a combination of white-box and

black-box techniques. The purpose is to use white box static analysis techniques to

produce probable vulnerabilities. At that moment, there is a confirmation phase where

the tool will essentially attempt to exploit the vulnerability. Only if this phase is

effective will the tool report the vulnerability (Yang.W, 2013).

2.2 Open Source Black-Box Vulnerability Scanners

Existing many of vulnerability detection tools and security assessment (Table

2.1). Most of those tools have been developed to try to automatically discover

vulnerabilities in web applications, produced as open-source projects such:

W3af (Riancho, 2015) (short for web application attack and audit framework) is an

open-source web application security scanner. This cross-platform tool is available in

all of the popular operating systems and is written in the Python programming

language.

Nikto (Al-Saleem, 2015, Nomura, 2007) is open source common gateway

interface (CGI) script scanners, which have face similarity with W3af and

PowerFuzzer concentrate on server vulnerabilities instead of user- input validation.

Nikto not only checks for CGI vulnerabilities but does so in an evasive manner, so as

to elude intrusion detection systems.

Xprobe or Nmap (Orebaugh et al., 2011) can define the availability of accessible

services and also hosts. Even that, they are not interested with height level

vulnerability scan.

http://www.cirt.net/nikto2

29

Powerfuzzer is an automated web testing tool (fuzzer application based on

HTTP protocol) established on many other available Open-Source fuzzers and

information collected from several security websites and resources.

Table 2.1: Most Open Source web-based application vulnerability scanners list.

(sectoolmarket.com)

Vulnerability Scanner Tool Version License Technology Latest Update

AidSQL 02062011
(Beta)

GPL2 PHP 02-02-2011

Andiparos 1.0.6 (GA) GPL2 Java 19-10-2010

arachni 1.1 (GA) ASF2/Com Ruby 01-01-2014

crawlfish 0.92 (Beta)

GPL2 .Net 28-08-2007

Mini MySqlat0r 0.5 (GA) GPL Java 06-11-2009

Oedipus 1.8.1 (Beta) GPL2 Ruby 08-04-2006

PowerFuzzer 1.0 (Beta) GPL Python 01-01-2009

Secubat 0.5 (Alpha) LGPL .Net 27-01-2010

sqlmap 1.0 (GA)

GPL2 Python 05-07-2012

W3AF 1.6 (Beta)

GPL2 Python 04-12-2013

Wapiti 2.3.0 (GA) GPL2 Python 20-10-2013

WebScarab 20110329

(GA)

GPL Java 29-03-2011

XSSploit 0.5 (GA) GPL2 Python 14-05-2009

XSSS 0.40 (Beta) GPL2 Perl 28-07-2005

ZAP 2.2.2 (GA) ASF2 Java 27-09-2013

2.3 Commercial Black-Box Vulnerability Scanners

Existing also numerous commercial products provide web application

vulnerability analyzing and scanning available on the market (Table 2.2):

Acunetix Web Vulnerability Scanner (Noertjahyana et al., 2015) is an automated

security test application which checks security vulnerability like SQL Injection, cross

site scripting and exploitable vulnerability, it seems that the XSS (cross-site scripting)

scan executed through Acunetix is frequently simpler an superficial than the complete

attack scenario shown in this paper (Acunetix). Also, no working proof-of-concept

exploits are made.

Netsparker that application can detect cross-site scripting issues and the SQL

Injection. Once a scan is done, it displays a list of solutions besides the issues and

enables to seen the browser view and HTTP request/response.

http://www.sectoolmarket.com/web-application-scanners/58.html
http://www.sectoolmarket.com/scans/42.html
http://www.sectoolmarket.com/scans/42.html
http://www.sectoolmarket.com/web-application-scanners/51.html
http://www.sectoolmarket.com/scans/1.html
http://www.sectoolmarket.com/web-application-scanners/57.html
http://www.sectoolmarket.com/scans/37.html
http://www.sectoolmarket.com/web-application-scanners/6.html
http://www.sectoolmarket.com/scans/25.html
http://www.sectoolmarket.com/scans/25.html
http://www.sectoolmarket.com/web-application-scanners/12.html
http://www.sectoolmarket.com/scans/29.html
http://www.sectoolmarket.com/web-application-scanners/36.html
http://www.sectoolmarket.com/scans/15.html
http://www.sectoolmarket.com/web-application-scanners/27.html
http://www.sectoolmarket.com/scans/27.html
http://www.sectoolmarket.com/web-application-scanners/20.html
http://www.sectoolmarket.com/scans/40.html
http://www.sectoolmarket.com/web-application-scanners/39.html
http://www.sectoolmarket.com/scans/41.html
http://www.sectoolmarket.com/scans/41.html
http://www.sectoolmarket.com/web-application-scanners/11.html
http://www.sectoolmarket.com/scans/7.html
http://www.sectoolmarket.com/scans/7.html
http://www.sectoolmarket.com/web-application-scanners/7.html
http://www.sectoolmarket.com/scans/20.html
http://www.sectoolmarket.com/web-application-scanners/4.html
http://www.sectoolmarket.com/scans/18.html
http://www.sectoolmarket.com/scans/18.html
http://www.sectoolmarket.com/web-application-scanners/25.html
http://www.sectoolmarket.com/scans/43.html
http://www.sectoolmarket.com/web-application-scanners/43.html
http://www.sectoolmarket.com/scans/39.html
http://www.sectoolmarket.com/web-application-scanners/52.html
http://www.sectoolmarket.com/scans/16.html
http://www.mavitunasecurity.com/

30

Multiple projects take up the task of evaluating the efficacy of popular black-box

scanners (in several situations also called point-and-shoot scanners). The common

topic in their results is a relevant discrepancy in vulnerabilities found across scanners,

along with low accuracy.

As well a lot of researchers have demonstrated commitment within their

researches to help explain limitations on web application security and recommended

ways to improve the security of web applications. Many black-box scanners are

already tested and limitations of such scanners have been found out and discussed in

details.

Table 2.2: Most commercial web-based application vulnerability scanners list

(sectoolmarket.com)

Vulnerability Scanner Tool Version Technology Latest Update

Acunetix WVS 9.0

Unknown 13-01-2014

Ammonite 1.2 .Net 28-04-2012

Burp Suite Professional 1.5.20 Java 29-11-2013

IBM AppScan 9.0.0.999

.Net 11-12-2013

JSky 3.5.1

Unknown 01-04-2011

Netsparker 4.1.1.0 .Net 16-06-2015

Netsparker Cloud 2015-06-16 Unknown 25-06-2015

N-Stalker X

Unknown 05-12-2014

NTOSpider 6.0

Java 01-11-2013

ParosPro 1.9.12 Java 28-03-2011

QualysGuard 2014-01-21

Unknown (Linux) 21-01-2014

Syhunt Dynamic 5.0.0.7

Unknown 31-12-2013

Tinfoil Security X Unknown (Linux) 20-12-2014

WebCruiser 2.7.0 .Net 04-11-2013

WebInspect 10.1.177.0

.Net 16-12-2013

http://www.sectoolmarket.com/web-application-scanners/65.html
http://www.sectoolmarket.com/scans/49.html
http://www.sectoolmarket.com/scans/49.html
http://www.sectoolmarket.com/web-application-scanners/79.html
http://www.sectoolmarket.com/scans/62.html
http://www.sectoolmarket.com/web-application-scanners/60.html
http://www.sectoolmarket.com/scans/44.html
http://www.sectoolmarket.com/web-application-scanners/76.html
http://www.sectoolmarket.com/scans/57.html
http://www.sectoolmarket.com/scans/57.html
http://www.sectoolmarket.com/web-application-scanners/67.html
http://www.sectoolmarket.com/scans/50.html
http://www.sectoolmarket.com/scans/50.html
http://www.sectoolmarket.com/web-application-scanners/68.html
http://www.sectoolmarket.com/scans/54.html
http://www.sectoolmarket.com/web-application-scanners/82.html
http://www.sectoolmarket.com/scans/65.html
http://www.sectoolmarket.com/web-application-scanners/81.html
http://www.sectoolmarket.com/scans/64.html
http://www.sectoolmarket.com/scans/64.html
http://www.sectoolmarket.com/web-application-scanners/63.html
http://www.sectoolmarket.com/scans/47.html
http://www.sectoolmarket.com/scans/47.html
http://www.sectoolmarket.com/web-application-scanners/64.html
http://www.sectoolmarket.com/scans/48.html
http://www.sectoolmarket.com/web-application-scanners/80.html
http://www.sectoolmarket.com/scans/63.html
http://www.sectoolmarket.com/scans/63.html
http://www.sectoolmarket.com/web-application-scanners/69.html
http://www.sectoolmarket.com/scans/58.html
http://www.sectoolmarket.com/scans/58.html
http://www.sectoolmarket.com/web-application-scanners/83.html
http://www.sectoolmarket.com/scans/66.html
http://www.sectoolmarket.com/web-application-scanners/66.html
http://www.sectoolmarket.com/scans/51.html
http://www.sectoolmarket.com/web-application-scanners/62.html
http://www.sectoolmarket.com/scans/46.html
http://www.sectoolmarket.com/scans/46.html

31

2.4 Academic Prototypes Black Box Vulnerability Scanners

Existing also several academic prototypes black box available for research

purpose, and provide analyzing and scanning for web application vulnerability

(Bennetts, S. 2013).

2.4.1 The Appraisal of Black Box Scanner Tools

The appraisal of black-box vulnerability scanners in this chapter, concerning to

two essential parts of research: the design of web applications for assessing

vulnerability analysis tools and the evaluation of web scanners (Bau. J, 2010).

2.4.2 Design Test of Web Applications

To assess web vulnerability scanner tools required to provide a vulnerable Test

application it's will be open to attack. Regrettably, no norm test set is currently

available or relied by the research community and industry. Hacme Bank and Web-

Goat (OWASP) are two famous publicly available vulnerable web applications, but

their design is based more on educating web application security instead of testing

(Foundstone, 2006).

2.4.3 Automated Web Scanners

Site Generator (OWASP) is an application that generates sites with specific

characteristics as classes of vulnerabilities for example according to its input

configuration. However Site Generator is highly helpful produce different vulnerable

sites by automatically way, it is found out that is easier to manually introduce in

Wackopicko the vulnerabilities with the characteristics that we wished for testing

(Bennetts, S. 2013).

2.4.4 Evaluating Web Vulnerability Scanners

Exist a large growing of literature about evaluation of web vulnerability tools

scanner. As example," Suto compared three" scanners against three other applications

and applied code coverage, among other metrics, as a measurement of the

effectiveness of every scanner (L. Suto, 2007).

32

Other same studies, (L. Suto, 2010) compared the assessment of seven web

scanners and their detection abilities also the time wanted to run them. (A.

Wiegenstein et al., 2006) run five unknown web scanners versus a custom

(benchmark. Unfortunately, there is no discussion in detail the reasons for the failure

of spidering or detections. In their survey of web security assessment tools, (M.

Curphey et al., 2006) reported that black-box scanners perform poorly. (H. Peine,

2006) examined in depth the functionality and user interfaces of seven scanners (three

commercial) that were run against WebGoat and one real-world application. (S. Kals

et al., 2006) was developed a new web vulnerability scanner and tested it on

approximately 25,000 live web pages. Because in fact there is no available for these

sites, the authors did not discussed about false negative rate or failures of their tool.

Ananta Sec released an evaluation of three scanners against 13 real-world

applications, three web applications provided by the scanner vendors, and a series of

JavaScript tests (AnantaSec). While this experiment assessed a large number of real-

world applications, only a limited number of scanners are tested and no explanation is

given for the results. In addition, (M. Vieira et al., 2009) tested four web vulnerability

scanners on 300 web services. They also report high rates of false positives and false

negatives.

(Kosuga et al., 2007) presented Sania which is an approach for detecting SQL

injection vulnerabilities during the development and debugging phases.

In particular, Sania identifies the potentially vulnerable spots in the SQL queries and

automatically generates attacks request according to the syntax and semantics of the

potentially vulnerable spots in the SQL queries. They compared the parse trees of the

intended SQL query and those resulting after an attack to assess the safety of these

spots. Unlike other approaches, Sania can generate attack request that targets two

vulnerable spots at the same time in one query.

Tappenden et al proposed three testing strategies one of them was testing via

HTTP Unit they used it to bypass the user input to the server escaping from client side

validation; mainly they check for division by zero, file upload and Base64 encoding

vulnerabilities. They suggest the same method could be extended to cover XSS, SQL

injection and buffer overflow vulnerabilities (Tappenden et al., 2005).

33

2.4.5 Vulnerability analysis and scanners

As a rule attackers uses the application layer protocol vulnerabilities as access

point to, and those attacks are very hard to defend. The most important reasons for

these attacks that managers of web applications do not search for security weakness in

their positions by using some of the simple tools available on the internet, although

the using of these tools remains the preserve of hackers; since this category are used

heavily in the detecting of security holes in sites and penetrate.

Many tools and approaches have been developed to analyze the vulnerabilities

in web-based applications. Implementing a daily vulnerability scan is one of the most

effective ways in which a website owner can ensure the overall health of his website.

It proactively identifies the vulnerabilities, lets the owner remove the questionable

code, and helps to mitigate issues before cyber criminals exploit them. Reactive

measures include quick identification of Zero-Day vulnerabilities (Ingham et al,

2007), which affect a large number of websites in a short span of time. There is no

patch available for this vulnerability. Even though a Zero-Day attack may occur, it is

possible to identify where the compromised websites are extracting the attack

information from, or where the malicious website visitors are being redirected to.

(S. Kals et al. 2006) was designed and implemented a tool called SecuBat which is a

vulnerability scanning tool, using black the box test technique and it automatically

scan web applications with a specific way to detect the SQL injection and XSS

vulnerabilities.

This tool analyzes web applications for exploitable vulnerabilities, by

employing multi- threaded crawling, attack and analysis components, provided by a

GUI. Although the tool SecuBat emphasizes on creating various attacking vectors for

detecting XSS vulnerabilities, it does not pay enough attention to detect SQL injection

vulnerabilities like blind SQL injection and Illogical Queries and Cross Site Scripting

(XSS).

2.4.6 Other Related Researches In The Area

The following table presents summary of analyzed other past researches in this

area, and presents most relevant and recent researches in this topic.

34

Table 2.3: Literature review summary

Research Title Author/yr. Objective Result
“application code by
static analysis and
runtime protection”
(HUANG et al.)

HUANG
2004

The author
additionally made a
device named
WebSSARI (Web
application Security
by Static Analysis
and Runtime
Inspection) to test our
calculation, and
utilized it to confirm
230 open-source Web
application ventures
on SourceForge.net,
which were chosen to
speak to tasks of
distinctive
development,
prevalence, and scale.
69 contained
vulnerabilities and
their designers were
told. 38
ventures recognized
our discoveries and
expressed their
arrangements to give
patches. His
measurements
additionally
demonstrate that
static investigation
diminished potential
run time overhead by
98.4%.

Keeping in mind the end
goal to explore different
avenues regarding his
proposed calculation, he
has actualized a code
walker for PHP. Be that as
it may, by giving other
code walker executions,
his methodology can be
utilized for other Web
programming dialects also.
In light of the troubles
included with creating
secure Web application
code, the more well-
known scripting dialects
contain different guides—
for occurrence, Perl's
spoiled mode and PHP's
"enchantment cites"
choice. In spite of the fact
that these elements offer
runtime insurance, they
are unequipped for
aggregate time bug
distinguishing proof. Perl's
corrupted mode tracks data
stream at runtime,
bringing about costly
overhead. The
enchantment cites
alternative causes the PHP
translator to utilize oblique
punctuation lines to
consequently get away
from certain hazardous
characters inside polluted
information. On the other
hand, escape systems
contrast contingent upon
the sort of corrupted
information and the set of
dangerous characters
being utilized. In this way,
the procedure takes out
specific sorts of assaults
(e.g., SQL infusion) yet
not others (e.g., cross-site
scripting, where
purification requires
getting away from an
alternate arrangement of

35

characters as per HTML
character substance
references

“Secubat: a Web
Vulnerability Scanner”
(KALS et al.)

KALS, S
KIRDA, E

2006

In this paper the web
scanner which
exploits XSS and
SQL injection
vulnerabilities that
contains three
essential components:
the first one is
crawling, the second
one is attack, and the
last is analysis. Three
components rely on
attacking database to
send real attacks and
observing the
application behavior.
The author proved
that the attackers can
automatically find out
and make use of the
applications
vulnerabilities level
in a lot of web
applications and that
was the basic goal of
this paper, His
solution for this
problem relies in
SecuBat that is a
generic and Modular
web vulnerability
scanner that analyzes
web sites for
exploitable SQL and
XSS vulnerabilities.

SecuBat was used to
identify a lot of possible
vulnerable web sites; a
large number of these web
sites has been chosen for
analyzing and manually
confirmed exploitable
flaws in the chosen web
pages, we can mention
among the victims huge
companies , computer
security organizations, and
governmental and
educational institutions

36

“Composing Static and
Dynamic Analysis to
Validate Sanitization
in Web Applications”
(BALZAROTTI et al.)

BALZAROTTI
2008

In this research paper,
the author presents a
new approach to the
analysis of the
sanitization process.
Exactly, he combines
static and dynamic
analysis techniques to
identify faulty
sanitization
procedures that can
be bypassed by an
attacker.
He implemented his
approach in a tool,
called Saner, and he
applied it to a number
of real-world
applications.

The author presented
Saner, a new approach to
the evaluation of the
sanitization process in
web-based applications.
The approach based on
two complementary
analysis techniques to
identify faulty sanitization
procedures.
He implemented his
approach, and by applying
it to real-world
applications to identify
novel vulnerabilities.
He said that in his future
work will focus on the
analysis of type-based
validation procedures, as
scripting languages.

“Penetration testing
with improved input
vector identification”
(HALFOND et al.)

HALFOND
2009

In this paper, the
author propose
another way to deal
with entrance
leveraging so as to
test that addresses
these confinements
two as of late created
examination methods.
The principal is
utilized to recognize
a web application's
conceivable
information vectors,
and the second is
utilized to naturally
check whether an
assault brought about
an infusion. To
experimentally assess
our methodology, we
analyze it against a
best in class, elective
system.
Our outcomes
demonstrate that our
methodology
performs a more
careful infiltration
testing and prompts
the disclosure of
more vulnerability.

The author made a model
instrument, SDAPT that
actualizes our infiltration
testing methodology. In
our observational
assessment, he thought
about SDAPT against a
state of-the-craftsmanship
entrance testing instrument
as far as practicality,
thoroughness, and
adequacy in testing nine
web applications.
The aftereffects of our
assessment demonstrate
that SDAPT can perform
more careful testing and
find a greater number of
vulnerabilities than a
customary device. In this
manner, the outcomes give
confirm that our
infiltration testing
methodology is, at any rate
for the applications
considered, down to earth
and viable.

37

“Toward Automated
Detection of Logic
Vulnerabilities in Web
Applications”
(FELMETSGER et al.)

FELMETSGE
2010

In this paper an
implementation of a
tool called Waler,
For using it to
analyze a number of
servlet-based web
applications,
identifying
previously-unknown
application logic
flaws.

To the extent that work
Waler is the first tool that
is able to automatically
detect complex web
application logic flaws
without the need for a
substantial human
(annotation) effort or the
use of ad hoc, manually
specified heuristics.

“E. Static analysis for
detecting taint-style
vulnerabilities in web
applications”
(JOVANOVIC et al.)

JOVANOVIC
2010

Presented concepts
were executed in
Pixy as detecting the
cross-site scripting
and SQL injection
vulnerabilities in PHP
programs by a high-
precision static
analysis tool in order
to prove the
techniques efficiency,
a lot of analyzing was
running on a large
number of popular,
open-source web
applications, as a
result we found out
that a huge amount of
vulnerabilities were
not recognized
before, our
techniques can be
used for conducting
effective security
audits as was showed
by Both the high
analysis speed as well
as the low number of
generated false
positives.

By running Pixy the
author was able to test his
concepts open-source
prototype implementation,
on seven open-source PHP
web applications.
The experimental results
proved that we have the
ability to discover
vulnerabilities efficiently
and automatically with a
low false positive rate.

38

State of the Art:

Automated Black-

Box Web Application

Vulnerability Testing”

(Bau et al.)

Bau, J.
2010

This paper presents a
study related to
automated black box
web application
vulnerability
scanners, and the
purpose of it is
presenting the
background which is
important to estimate
and identify the
potential value of
future research in this
area, as we know it is
considered the most
comprehensive
research on any
group of web
scanners until now, to
complete the study a
custom web
application
vulnerable to
recognized and
expected
vulnerabilities, in
addition to the
previous versions of
widely used web
applications
including known
vulnerabilities were
used.

The author worked on the
vulnerabilities that black-
box scanners currently
work on detecting plus the
affectivity of
vulnerabilities detection,
Cross-Site Scripting, SQL
Injection, other forms of
Cross-Channel Scripting,
and Information according
to a web-application
vulnerabilities survey in
the wild.
Also Disclosures are the
most prevalent classes of
vulnerabilities.
Moreover he discovered
that black-box web
application vulnerability
scanners expend testing
effort in rough proportion
to the vulnerability
population in the wild.
According to results of
tests on ex-versions of
popular applications and
textbook cases of Cross-
Site we found that
Scripting and SQL
Injection, black-box
scanners are good at
detecting straightforward
historical vulnerabilities.

http://uitm.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA7Sk6e6VKxayB8YO5nMFimFIpYeK5Z6rFlepNCNLmD99ealM63Vg-Atb3JKBt778pbvI4RH92HwwyfkRkoLVjGTgrWJBhdZQg2px6uSgc9kiEFPPA-RM6lUWUS9E9-KBve49JV9Z6-aUq1GcjLxtIJyWYhnOLAdZwIHzlFOZTfLtc-3IHX4twpDFHIvkshcSAzco4SVQ19pLmJRckEVdlTwmrJQNF_6u36w6FiPxXvXbpWUvU3wKb3g4aE4PV5Pff5luv1N-Pivc56R2mEqkPb38e6cnMDsglRLWQhaeIlL8uYBLJ1b6sAl7SzXD7SzWc8dNAZDW6rtc4atpmoHaMw_cInfX0H5ZedQU6fDzQRpsX0H75YOkBJk9l4jg-7T4LEXFEIOwRj9KedgMuAphInONdNKg4NBeagcWEtsYiyLjVAis0pmKhNIeY8qKNohCYhDxfkVqczmM7gm1CYJN5HUQqrYvdVikfOUaQ4qMtwmzNRJHS9wtNhRdYzC4q5GC2PrpHG85wFyGjuIo5I8y27-2L8lp7vWAcy_3JHKermBBqngj_0Cfv_XTA
http://uitm.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA7Sk6e6VKxayB8YO5nMFimFIpYeK5Z6rFlepNCNLmD99ealM63Vg-Atb3JKBt778pbvI4RH92HwwyfkRkoLVjGTgrWJBhdZQg2px6uSgc9kiEFPPA-RM6lUWUS9E9-KBve49JV9Z6-aUq1GcjLxtIJyWYhnOLAdZwIHzlFOZTfLtc-3IHX4twpDFHIvkshcSAzco4SVQ19pLmJRckEVdlTwmrJQNF_6u36w6FiPxXvXbpWUvU3wKb3g4aE4PV5Pff5luv1N-Pivc56R2mEqkPb38e6cnMDsglRLWQhaeIlL8uYBLJ1b6sAl7SzXD7SzWc8dNAZDW6rtc4atpmoHaMw_cInfX0H5ZedQU6fDzQRpsX0H75YOkBJk9l4jg-7T4LEXFEIOwRj9KedgMuAphInONdNKg4NBeagcWEtsYiyLjVAis0pmKhNIeY8qKNohCYhDxfkVqczmM7gm1CYJN5HUQqrYvdVikfOUaQ4qMtwmzNRJHS9wtNhRdYzC4q5GC2PrpHG85wFyGjuIo5I8y27-2L8lp7vWAcy_3JHKermBBqngj_0Cfv_XTA
http://uitm.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA7Sk6e6VKxayB8YO5nMFimFIpYeK5Z6rFlepNCNLmD99ealM63Vg-Atb3JKBt778pbvI4RH92HwwyfkRkoLVjGTgrWJBhdZQg2px6uSgc9kiEFPPA-RM6lUWUS9E9-KBve49JV9Z6-aUq1GcjLxtIJyWYhnOLAdZwIHzlFOZTfLtc-3IHX4twpDFHIvkshcSAzco4SVQ19pLmJRckEVdlTwmrJQNF_6u36w6FiPxXvXbpWUvU3wKb3g4aE4PV5Pff5luv1N-Pivc56R2mEqkPb38e6cnMDsglRLWQhaeIlL8uYBLJ1b6sAl7SzXD7SzWc8dNAZDW6rtc4atpmoHaMw_cInfX0H5ZedQU6fDzQRpsX0H75YOkBJk9l4jg-7T4LEXFEIOwRj9KedgMuAphInONdNKg4NBeagcWEtsYiyLjVAis0pmKhNIeY8qKNohCYhDxfkVqczmM7gm1CYJN5HUQqrYvdVikfOUaQ4qMtwmzNRJHS9wtNhRdYzC4q5GC2PrpHG85wFyGjuIo5I8y27-2L8lp7vWAcy_3JHKermBBqngj_0Cfv_XTA
http://uitm.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA7Sk6e6VKxayB8YO5nMFimFIpYeK5Z6rFlepNCNLmD99ealM63Vg-Atb3JKBt778pbvI4RH92HwwyfkRkoLVjGTgrWJBhdZQg2px6uSgc9kiEFPPA-RM6lUWUS9E9-KBve49JV9Z6-aUq1GcjLxtIJyWYhnOLAdZwIHzlFOZTfLtc-3IHX4twpDFHIvkshcSAzco4SVQ19pLmJRckEVdlTwmrJQNF_6u36w6FiPxXvXbpWUvU3wKb3g4aE4PV5Pff5luv1N-Pivc56R2mEqkPb38e6cnMDsglRLWQhaeIlL8uYBLJ1b6sAl7SzXD7SzWc8dNAZDW6rtc4atpmoHaMw_cInfX0H5ZedQU6fDzQRpsX0H75YOkBJk9l4jg-7T4LEXFEIOwRj9KedgMuAphInONdNKg4NBeagcWEtsYiyLjVAis0pmKhNIeY8qKNohCYhDxfkVqczmM7gm1CYJN5HUQqrYvdVikfOUaQ4qMtwmzNRJHS9wtNhRdYzC4q5GC2PrpHG85wFyGjuIo5I8y27-2L8lp7vWAcy_3JHKermBBqngj_0Cfv_XTA

39

“SENTINEL: Securing
Database from Logic
Flaws in Web
Applications”
(LI et al.)

LI & YAN
2012

SENTINEL is a
prototype detection
system that executed
to detect logic flaws
in web application
database, then using
some of real-world
web applications to
estimate it, after
testing the experience
out came with results
which proved our
approach affectivity
and the performance
was acceptable
overhead which
incurred by this
implementation

You can find in this paper
an presentation for a
black-box approach for
detecting malicious SQL
queries that make use of
the logic flaws which are
exist in web application,
the author combined a
number of invariants with
SQL signatures like the
application specifications
interactions between the
application and database,
if he want to make
evaluation he choose the
vulnerable web
applications and after
testing the experience out
came with results which
proved our approach
affectivity, he proved that
SENTINEL introduced
very few false positives
and acceptable
performance overhead.
His future goals are
investigating the
techniques of
automatically verifying
inferred invariants and
further suppressing false
positives.

40

 “automatic discovery
of logic vulnerabilities
within web
applications”
(Li, et al.)

Li & Xue
2013

Here in this paper,
the author worked on
identifying logic
vulnerabilities inside
web applications by
heading towards a
systematic black-box
approach, first of all
we collect and
analyze execution
traces when users
follow the navigation
paths inside the web
application in order
to construct a partial
FSM over the
expected input
domain, second of all
he construct
unexpected input
vectors and evaluate
corresponding web
responses to test the
application at each
state, finally he use a
number of real world
web applications to
execute a prototype
system Logic Scope
and proved its
effectiveness

Here in this paper, the
presentation for a black-
box approach to identify
logic flaws inside web
applications, to execute
and estimate a prototype
system Logic Scope to
prove the effectiveness of
the approach, finally he
clarify some limitations as
following:
1. LogicScope cannot

handle AJAX web
applications.

2. LogicScope has
limited capability in
handling complex
relationships/constrain
ts inside database.

41

“An automated black

box approach for web

vulnerability

identification and

attack scenario

generation” (Akrout et

al.)

Akrout, R

2014

This paper presents a
new methodology,
based on Web page
clustering techniques,
which is aimed at
identifying the
vulnerabilities of a
Web application
following a black box
analysis of the target
application.
Each identified
vulnerability is
actually exploited to
ensure that it does not
correspond to a false
positive. The
proposed approach
can also highlight
different potential
attack scenarios
including the
exploitation of
Several successive
vulnerabilities, taking
into account
explicitly the
dependencies
between these
vulnerabilities. We
Have focused in
particular on code
injection
vulnerabilities, such
as SQL injections.
The proposed
methodology led to
the development of a
new Web
vulnerability scanner
that has been
validated
experimentally on
several examples of
Vulnerable
applications.

Various directions will be
considered for extending
The results obtained so far.
First, regarding the
proposed approach for
detecting vulnerabilities
and generating attack
scenarios based on the
elaboration of the Website
navigation graph,
optimizations would be
necessary to master the size
of the graph, especially
when it
Is to be applied to complex
Web sites. Another
perspective would be to
enrich the grammars
implemented in Wasapy to
allow the generation of a
larger variety for injections
covering the vulnerabilities.

42

“A Black-Box

Approach to Detect

Vulnerabilities in Web

Services Using

Penetration Testing”

(Salas et al.)

Salas, P

2015

This research use the
penetration testing to
emulate a series of
attacks, such as
Cross-site Scripting
(XSS), Fuzzing
Scan, Invalid Types,
Malformed XML,
SQL Injection, XPath
Injection and XML
Bomb. In this way,
was used the soapUI
vulnerability scanner
in order to emulate
these attacks and
insert malicious
scripts in the requests
of the web services
tested.
Furthermore, was
developed a set of
rules to analyze the
responses in order to
reduce false positives
and negatives. The
results suggest that
97.1% of web
services have at least
one vulnerability of
these attacks. The
research also
determined a ranking
of these attacks
against web services.

The approach was aimed to
evaluate the results of
vulnerability scanner
soapUI with the add-on
Security testing by injecting
7 attacks on 69 services.
Each response was
evaluated on a set of rules
analysis and vulnerability
detection for attacks
Injection (Cross-site
Scripting, Fuzzing Scan,
Invalid Types, Malformed
XML, SQL Injection,
XPath Injection) and Denial
Services (XML Bomb).
The results suggested that
the vulnerability scanner
soapUI has a high
percentage of false
positives, false negative and
low vulnerability coverage
exist which can be
improved using this
approach. In addition,
97.10% of web services
tested vulnerabilities have
at least one of the types
emulated attacks.

2.5 White Box Technique Review

This section shows the related work of white box approach and presents most

relevant and recent researches in this topic (Table 2.4).

Li et al presented a perturbation-based methodology to validate user input which

contributes to different kinds of attacks and security threads in Web environment.

Their focus was to detect the semantics-related vulnerabilities in the input which are

not detected using available scanner tools. A scanner is a software program that

searches for known security vulnerabilities in the Web applications, by testing HTTP

requests against known CGI (common gateway interface) strings (Lucca et al., 2006).

In particular, (Li et al., 2010) used input field information to generate valid inputs, and

then use valid inputs to generate invalid test inputs. Using empirical study, they

43

showed that their approach was more effective than the existing scanners in finding

semantics-related vulnerabilities of user input for Web applications.

Avancini et al combined taint analysis with GA to define the vulnerable

control- flow paths in the Web application and generate input values that makes the

application traverse those paths. They proposed a very simple fitness function that

considers the percentages of branches covered by a given input compared to a given

target path. They only considered the reflected XSS type of vulnerabilities and not all

of the XSS types. They also did not make use of the genetic mutation operator to its

fullest extent. By adding more sophisticated fitness function and better mutation rules

their work can give better results. We tried to overcome their shortcomings in this

work; this is in addition to addressing weaknesses of other approaches (Avancini et

al., 2010).

He et al utilized regression testing to detect vulnerability for Web applications;

they presented a strong-association rule based algorithm to make the vulnerability

detection more efficient. The algorithm, first, traverses the whole Web site to get the

Web pages collection. Then, in the regression test step, the algorithm makes the

association between the pages and expands the pages to a collection set. They define a

relational grade to describe the association. After testing the algorithm in real Web

site, results show that the algorithm can detect almost all the pages that may contains

vulnerabilities in the target Web site (He et al., 2009).

Shahriar et al proposed a mutation-based testing approach to address XSS,

Buffer Overflow and SQL injection attacks. They defined mutation operators to

generate mutants from the original program along with killing criteria to kill the bad

mutants. Their adequacy of a test data set is measured by mutation score, which is the

ratio of the number of killed mutants to the total number of non-equivalent mutants.

By comparing the mutants with original program using specific input derived from

their collected attacks pool they can decide if this input exposes an attack. Otherwise,

the mutant killed by the killing criteria (Shahriar et al., 2009).

Kieżun et al proposed attack creation technique. It generates a set of concrete

inputs, executes the script under test (SUT) with each input, and dynamically observes

whether data flows from an input to a sensitive sink (e.g., a function such as database

query or print statement). If so, the proposed technique modifies the input by using a

library of attack patterns, in an attempt to pass malicious data through the program

aiming to address the SQL injection attacks (Kieżun et al., 2009).

44

Mcallister suggested a technique to create comprehensive test cases to allow

their scanner to reach “deeper” inside the application under test. Previously recorded

user input used to fill out the complex forms. They replace non malicious test cases

with attack test cases and the reaction of the application is observed (Mcallister et al.,

2008).

 Salas et al suggested a framework to support automatic generation of test cases

that will show the presence of pre-defined security vulnerabilities. In their work, they

showed that an abstract model of a piece of software could be complemented with

implementation details to allow the generation of adequate test cases (Salas et al.,

2007).

Table 2.4: White box approaches comparison

Work Attacks Generation Algorithm Test cases Tool
Automation

Li et al.
2010

XSS
SQLIJ

Perturbation based
Algorithm

Perturbing
regular
expressions

Fully automated

Avancini et
al.
2010

XSS GA URL Fully automated

He et al.
2009

XSS
SQLIJ

None code Manually (No tool
just algorithm)

Shahriar et
al.
2009

XSS None, they use attacks
database

Attacks
Pool

Semiautomated
(Theprocess is not
completely covered the
tool).

Kieżun et
al.
2008

XSS
SQLIJ

Algorithm combines
concrete and symbolic
execution to generate
input that covers the
available paths in the
application.

code and
attacks
database.

Fully
automated

Mcallister
et al.
2008

XSS None, test data derived
from the recorded old
user sessions.

User
session

Fully automated

Shahriar, et
al.
2008

Buffer
Overflow

None, they use attacks
database

Attacks
Pool

Semiautomated (The process
is not completely covered
the tool).

Salas et al.
2007

SQLIJ

None, the work
presented model based
framework could be
used to generate test.

Source
code

Fully automated

45

2.6 Analysis and Observations

Based on the above review and a comparison among different approaches of

Web application security testing, our primary observations can be summarized as

follows:

1. The most addressed security vulnerabilities for Web applications are reflected cross

site scripting (XSS), SQL injection (SQLIJ) and Buffer Overflow. This is because

those attacks are the top three attacks in the top ten attacks published by the Open

Web Application Security Project (OWASP).

2. There is no much work about black box approach, and Most of the approaches

today are white box based, in which source code is needed.

Analyzing the source code can lead to more accurate test cases which are able to

reveal the attacks and lead to secured Web application.

3. Most of the reviewed approaches use a kind of attacks database. In this case the

corresponding database should be maintained to stay current; this poses a challenge.

There are also other limitations with this scheme.

46

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

There are several scanner tools in the market trying to detect vulnerabilities

with many detection mechanisms. Our present tool which we called BBWAV will

base on crawler technique.

This chapter offer a full description of the research methodology to succeed

the objectives discussed in chapter one. The methodology of this research includes

three main phases; first is crawling phase by implementing a web crawler and second

is analyze cycle which we will prepare a parser during this phase, third is attack phase

that using the information which was produced by analyze cycle to attack the page.

Web application vulnerability scanners aim to detect vulnerabilities by injecting attack

vectors.

Figure 3.1: Scan phases

BBWAV generally include three main Modules (Figure 3.1) , a crawler

module to collects a set of target web sites and download the page Mark-up in order to

retrieve injection points, an parser parses the markup in order to find out its links ,

forms and input fields and its link queries string parameters. Finally an attack module

Crawling Phase

Attack Phase (Scan)

Analyze Phase

47

which analyses and starts the structured attacks versus these targets after the crawling

phase has completed.

3.2 Crawling

We can define “Web crawler” as an automated program which Download the

web pages of given URLs, as well extracts the contained hyperlinks in them, and

iteratively carry on to download the web pages identified by these hyperlinks. Web

crawlers are an essential module of many applications that treat large numbers of web

pages, such as web search engines , web data mining, comparison shopping engines,

and soon.

The first step of scanning after a Given URL is crawling. By scanning html

pages, scanners can check and explore subdirectories, forms, and links to other

resources. The effective web application scanning process depends a lot on how much

the scanner knows about the target website’s structure. In order to detect a new

resource, scanners make various efforts. For example, some scanners append crafted

strings at the end of existing URLs, hoping to reach pages matching the ge nerated

URLs, or to be redirected to pages having similar URLs. In the crawling phase of

Skipfish (Zalewski, 2011), crafted resource name such as “sfi9876” with various

types, such as asp, pdf, zip, etc, … are appended to several existing URLs. For this

reason, crawling efforts usually generate a large amount of attempting requests, and

require scanners to deal with massive data transmission. For a large web application, it

usually takes quite a long time to finish a complete and in-depth crawling process, or

bring a high memory requirement for the machine using the scanner. To improve our

user experience, certain configuration options can help us control the crawling process

according to our needs. For example, Skipfish uses the “-d” command option to limit

the crawling depth to a specified number of subdirectories, and Netsparker has options

to set a total page limit.

3.3 Web Crawler Algorithm

This web crawler traverses the current page by breadth-first strategy and

crawls all links which meet the conditions have not been visited links. The design of

web crawler module is shown in figure 3.2.

48

Figure 3.2: Crawler algorithm. (Rungsawang, A., & Angkawattanawit, N. 2005)

3.4 Vulnerability Detection Main Components

BBWAV contains three basic modules: the first one is crawling module which

gathers a group of specific web sites, second module is attack unit that makes

formation attacks against these web sites, and the third one is analysis unit that checks

the result came back from the web applications to decide if the attack worked well

49

3.4.1 Crawler Module

The main thing about the remote web servers is the slow response as the ideal

amount between 100 -10000 milliseconds, in order to develop the crawling

competence a lined up workflow system is used to do different concurrent worker

threads, as it relies on the job of the hosted device for BBWAV, the wide of the range

of the uplink, and the specific web servers, between 10 to 30 concurrent worker

threads spread while the vulnerability detection goes on, now if we want to begin a

crawling session, at first we have to seed the BBWAV crawling component with a

root web address and we deal with this address as a starting point, then the crawler

moves away the link tree, while the process is going on the crawler gathers the entire

papers and the web forms as like as any web crawler, BBWAV contains formal

choices for all of maximum link depth, maximum number of pages per domain to

crawl, maximum crawling time, and the option of dropping external links. Conceptual

ideas for the execution of the crawling component.

3.4.2 Attacker Module

The next step for BBWAV after the crawling phase is processing a set of target

pages, now specifically the attack module job comes as it scans every single page to

check the web forms existence and that because the fields of web forms make our

entry points to web applications for every single web form, we have the mission of

extracting the target address and the method (i.e., GET or POST) that is used to

submit the form content and the form fields in addition to their corresponding.

After collecting CGI parameters appropriate values for the form fields has

been selected relying on the actual attack which was launched and as a result the form

content is uploaded to the server that was selected by the action address –whether we

use GET or POST request- according to the HTTP protocol, the target server replays

to a web request like that as it sends back a response page using HTTP.

50

3.4.3 Parser Module

A parser is a program that receives input in the form of sequential source

program instructions, interactive online commands, markup tags, and breaks them up

into parts. A parser may also check to see that all inputs have been provided that is

necessary Figure 3.3.

The analysis module comes after the attack stage and its job to parse and interpret the

server response, depending on calculating a confidence value the analysis module can

decide whether the attack was successful and that after scanning a lot of web sites.

Start Download

Page

HTML Parser

Obtain links by parsing the

downloaded page without content

Download the page

with content

Links without

content

Figure 3.3: Parser module

51

3.5 General Architecture

Use Case Diagram and General Architecture of the Proposed Solution is

shown in Figure 3.4 and Figure 3.5, includes these steps:

- BBWAV follows all the pages of the target website in order to scan all of them

that are why we need a "web crawler" and a parser in our tool.

- Analyze each page content in order to find: anchor tags (<a>) and their href

attribute, HTML from tags (<form>) and their (<input>) fields and the

parameters of the page links (Query string parameters).

- The target website will be a big website usually and that why we will need a

database for the tool.

Crawling

End Scan

Phase

Scan

Report

Phase

Vulnerabili

ties

Us

er

Normal Scan Deep
Scan

Figure 3.4: Use case diagram

52

On the other hand BBWAV offers two modes of scan:

- Normal mode (default): in this mode the scan will be done for the whole block

of parameters, that’s mean BBWAV in this mode will try to attack all query

strings parameters at the same time with the same malicious input, which will

reflect at the end as “this page has this vulnerability” no matter where exactly

the vulnerability is.

- This mode is used when you need to perform a speed scan.

- Deep Scan mode: on the other hand, in “Deep Scan” method the scan will be

done for one parameter only at a time, meaning that you will know exactly

which page parameter is vulnerable and which one is not. This mode need

more time because BBWAV will send a new web request for each parameters.

Generate

Report

Analyze Phase

Attack Phase

Web

Crawler

HTML

Parser

Attacker

Rep

ort

Crawling Phase

Figure 3.5: The general architecture of the proposed solution.

53

Begin

Next Page

Detect Links

Evaluate Link

Reject Link
Parse and
Save Link

Start Attack

Attack Form

Attack Page

Attack
Efficacy

Assessment

Save Attack

Information

3.6 General Algorithm

As shown in the Figure 3.6, an embodiment of the present method as a how

chart showing the identification of links of interest and security vulnerabilities. The

algorithm of detecting web site vulnerabilities includes connecting to a website to

evaluate the website for web application vulnerabilities. Also includes retrieving a

webpage from the website and identifying a link within the retrieved webpage. Further

includes comparing the identified link to a known database of links to determine a

Report

All Attacks

Finished

Worth Link
Bad Value

Figure 3.6: General algorithm to identify and evaluating Web application vulnerable

Worth Link

54

unique link. Once the unique links are identified the method can request the unique

links from a server for evaluating vulnerabilities.

The method generates an attack string directed to the requested unique link and

identifying any security vulnerabilities within the requested unique link.

What is requested is:

 A method of detecting website vulnerabilities, comprising the steps of

connecting to a website.

 Retrieving a webpage from the Website.

 Identifying a link within the retrieved webpage.

 Comparing the identified link to a known database of links to determine a

unique link, where in determining the unique link includes evaluating a degree

of uniqueness when compared to the known database.

 Requesting the unique link from a server.

 Generating an attack string directed to the requested unique link, and

identifying security vulnerabilities within the requested unique link.

3.7 Database Diagram

 I selected MS-Access in order to make BBWAV a “Portable” tool Because

MS-Access does not need a database server, As well a “Profile” for each test in order

to allow BBWAV users to “Pause” and “Continue” the scanning later and this is very

imperative in the large websites. Also save the vulnerable pages in the “Exploit” table

in order to offer some statistical information about the website to the user as shown in

the Figure 3.6.

55

The vulnerable pages will be saved in the “exploit” table in order to offer some

statistical information about the website to the user. On the same way website pages

with its contents will be saved in the “page” table in order to analyse its content by the

crawler for more links, in addition of offer website map to the user after a successfully

crawling.

3.8 Implementation

The implemented automated approach “BBWAV” based on C# using

Microsoft’s Visual Studio.NET 2012 Integrated Development Environment (IDE).

BBWAV it’s an open-source tool, which can analyze known vulnerabilities. Open-

source is important for other researchers to replicate our results, and known-

vulnerable is important because we aim to automatically prevent these known

vulnerabilities.

Figure 3.6: Database diagram

•Profile ID
•Profile Name

•XSStest
•SQL Injection Test
•RFI test

•Deeep Scan

Profile

•Exploit ID

•Profile ID

•Exploit Type
•Exploit Usage
•VulnerableField

Exploit

•Page ID

•Page URL
•Profile ID

•Page Conetent
•Analayse Types

Page

1

∞

∞

56

Finding this application proved to be a challenge, compared to other languages

such as PHP, ASP and Python.

BBWAV offer also two mode of scan such default mode and deep mode scan.

Default mode will be done for the whole block of parameters at a time, that’s mean

BBWAV in this mode will try to attack all query strings and parameters at the same

time with the same malicious input. This mode is used when you need to perform a

speed scan and the time of scan can be calculated by the equation:

Where :

n: number of profile (site) web pages.

NT: number of tests (XSS only, XSS and RFI, Etc.).

RT: time for the web request to be done.

Deep Scan will be done for one parameter only at a time, meaning that you will know

exactly which page parameter is vulnerable and which one is not.

This mode need more time because BBWAV will send a new web request for each

parameters meaning the final time for scanning T is equal :

Where :

n: number of profile (site) web pages.

NQ: number of page query strings parameters.

NF: number of page form input fields.

NT: number of tests (XSS only, XSS and RFI, Etc.).

RT: time for the web request to be done.

Also our BBWAV tool will provide us scanning history storage and a detailed

report about the scanning process and provides all of the vulnerable links and target

also provide a small notes for each vulnerable found and how to fix it.

57

3.9 BBWAV User Interface

The User Interface contains all the main features needed to operate the

application.

3.9.1 Main User Interface

From the Main User Interface you can launch a new scan, open old scan, and

access to Help guide for more information, or terminate the application (Figure 3.7).

Figure 3.7: BBWAV main interface

New Scan: Access the Scan Wizard to start a new scan.

Open old scan: open an old scan

Help: for more information about the use of BBWAV

About: describe author and software license

Close: to terminate the application

58

3.9.2 New Scan

With click on New Scan button, the Scan Wizard will start up and offer you a

number of settings to guide you through the process of launching a website

audit. You will need to enter the IP or the URL of the website that you wish to scan as

shown the Figure 3.8.

Figure 3.8: Scan target and configuration

Figure 3.9: Scan framework

As shown in the Figure 3.8, a sample window is given to enter the IP or the URL of

the website that you wish to scan, also to enter the name of scan session with selecting

the types of vulnerability which the user want to scan, when the “OK” button is

clicked, the scan window framework executed as shown in the Figure 3.9.

59

3.9.3 Open Old Scan

With click on Open Old Scan button, the tool will offer you to open any old scan

history.

Figure 3.10: Open an old scan

A list of old scan sessions is given in the Figure 3.10. the user need to select the

session of scan and click “Ok” button which provide the history scan of the selected

session on the list.

60

CHAPTER FOUR

RESULT AND DISCUSSION

4.1 Introduction

There are different scanners trying to detect vulnerabilities. In this

chapter, we will discuss the result depend on their detection mechanisms and reporting

by using our tool BBWAV as a goal of comparing. i introduce the four scanning

phases of many scanners, including crawling, electing attack points, attacking, and

reporting. In our detailed comparison for injection mechanisms, we concentrate on the

phase of attacking, which affects the attack effectiveness. To have an intuitive

understanding of the attack mechanisms, we have a source code study of Skipfish

(Zalewski, 2011), an open source web application scanner developed by Google. For

the phases crawling and deciding attack points, since the evaluations focusing on them

can be separate topics in related work, we do not cover detailed comparisons for

scanning performance in these two phases in this thesis.

According to our scanning experience, most scanners use automated fuzz

testing

techniques. At first, scanners inject invalid inputs to certain input fields, which are

referred as attack points in this thesis. Then, they search for certain predefined

patterns in the response pages, trying to show that there is no proper sanitization on

the inputs in vulnerable locations.

This chapter describes the details of our testing and result process. In the

following sections, we will introduce the web application scanners we use case studies

of real world applications and controlled test applications. To study the reasons

causing the different scanning performance, we also present our comparisons for

attack and injection mechanisms.

4.2 Proposed Web Application Scanners

This section introduces the web application scanners used in our project. In

many cases, commercial scanners are easier to use. They have more advanced user

interfaces helping control their scanning activities. In contrast, many open source tools

have rudimentary configuration support, and some of them only rely on command line

61

operations to configure their scanning processes. They usually take more time to set

up. But on the other hand, open source scanners have no restriction for users to access

their technical details, which is helpful for further studying their detection

mechanisms.

Our experiments mainly focus on four scanners. Netsparker community edition

and Acunetix free edition are commercial tools, and Wapiti is an open source.

Table 4.1 gives a comparison for various usability- related features of the scanners

mentioned above.

Table 4.1: Usability Comparison for 3 scanners

 Netsparker

CE

Acunetix free

edition

Wapiti

Overall

Usage

GUI Yes Yes No

Crawling

Stop after Crawling

No
(disabled)

Yes No

Exclude URL Yes Yes Yes

Session

Maintenance

Login method Cookie Login
Sequence

Cookie
File

Exclude
Logout

Yes Yes Yes

Reporting Show crawl
result

Yes Yes No

Severity

classification

Yes Yes Yes

Request& Response
detail

Yes No No

Attack pattern Yes Yes Yes

4.2.1 Netsparker Community Edition

The edition we use is Netsparker community edition. It is a commercial

scanner claimed to be free from false-positives, as described in the product website. It

shares the same user interface with the professional edition. To perform automatic

authentications, Netsparker allows users to use cookie strings of authenticated

62

sessions. In our evaluation, cookie information is obtained by the network tamper tool,

i.e., the tamper data plug- in of Firefox, which can help view and modify the contents

in request headers and parameters. To maintain the authenticated session status,

Netsparker allows users to specify the key words that should be included or excluded

in the web pages being scanned, and users can use this method to detect and avoid

logout pages. This feature is quite useful, since it is often that the session has a logout

state when a logout page is visited, and many web pages cannot be reached

afterwards. Although several advanced reporting functionalities are disabled in this

free version, it still provides sufficient information, such as the severity type,

background description, request and response content focusing on the reported

locations, and attack strings used to exploit the vulnerabilities. The crawling results of

the target websites can also be viewed in the report page.

4.2.2 Acunetix Web Vulnerability Scanner Free Edition

Acunetix free edition is another free scanner without any period limitation. It

has an advanced graphic user interface. To perform the login operations automatically,

Acunetix has a recorder with a mini browser to record the users’ logging actions,

including the URLs visited, the password entered, etc. The scanner is able to retrieve

the recorded information, which is referred as login sequence, to perform automatic

authentications at later scanning phases. To maintain a valid session status for

reaching more web pages, the recorder allows users to specify key words indicating

whether the session is in the login state or logout state. In this way, the scanner is able

to avoid pages with the specified key words and avoid unexpected status changes.

After the crawling phase, Acunetix allows users to choose which web resources

should be included or excluded in later scanning phases.

 In its final report, users can see descriptions of vulnerabilities and attack strings. But

it does not provide the details of the requests and responses related to the reported

issues.

4.2.3 Wapiti

Wapiti is an open source scanner written in Python, and the version we use is

2.3.0., it only uses a command line interface to configure its scanning processes. To

perform automatic authentications, it has programs to generate cookie files according

to the login page URLs and credential data provided by the users. Different from

63

cookie strings which are used directly by many scanners, the cookie files embed the

cookie information in their text content, and the scanner can obtain the information

from the files to perform authentication activities. Our evaluation experience shows

that it cannot bypass authentication web pages in several scanning runs. The scanner

also has commands to exclude certain URLs during the crawling phase, avoiding

logout pages.

The reports are generated as html pages, which present brief vulnerability

descriptions, vulnerable locations and parameters, and attack strings. They do not have

detailed information about the crawling results, such as detailed content in requests

and responses focusing on the vulnerable locations, vulnerability classifications in

deeper levels, and more detailed descriptions, etc.

4.3 Testbed for Proposed Web Application Vulnerability Scanners

In order to make our testbed for proposed web application vulnerability

scanners, there are many “vulnerability demonstration sites”, such as testfire.net and

webscantest.com or as web application designed to teach web application security

concepts such as WebGoat by OWASP, Hacme Bank (Foundstone, 2006). However,

BBWAV has produced an interesting comparison of four proposed black-box scanners

by running the products against several of these demonstration sites. Finally, we select

as a testbed for proposed Application Vulnerability Scanners against BBWAV which

is vulnweb.com proposed by Acunetix.

Testfire.net website is published by Watchfire, Inc. for the sole purpose of

demonstrating the effectiveness of Watchfire products in detecting web application

vulnerabilities such as SQL injection, Cross-Site Scripting (XSS)...etc., and website

defects. This site is not a real banking site.

4.4 Joined Results

4.4.1 General Detecting Vulnerability Test

The main objective of present real test bed is to select the tools that generated

the most useful results. As shown in table 4.2 and Appendix B, SQL injection for

Netsparker had the good result. Even Acunetix had good result for SQL injection

comparing with BBWAV and Wapiti. On the other hand BBWAV had good result

concerning XSS and RFI Vulnerabilities comparing with all tested tools.

http://www.acunetix.com/vulnerability-scanner/

64

Table 4.2: Number of detected Vulnerability

The results of tested tools are explained in Table 4.2 and shown by illustrated graph in

Figure 4.1, to gain an overview of those tools.

Figure 4.1: illustrated graph of detected Vulnerability

4.4.2 False Positive Results

A false positive is where you receive a positive result for a test, when you

should have received a negative result. In our test we detect some of false positive by

the tool used in the scan and sometimes by experience in the field of pentesting.

The results of false positive detected by the presented scanner are clarified in

Table 4.3 and Appendix B, the lowest number of false positive was detected by

BBWAV and Wapiti (it detected one vulnerability that, in fact do not exist). Highest

number of false positives was detected by Acunetix (it detected 10 vulnerabilities that,

in fact, do not exist).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Netsparker

Acunetix

Wapiti

MASCULA

RFI

XSS

SQL Injection

 Netsparker Acunetix Wapiti BBWAV

SQL Injection 7 5 4 3

XSS 3 4 2 6

RFI 0 0 0 1

65

Table 4.3: Number of False Positive

Netsparker Acunetix Wapiti BBWAV

2 4 1 1

4.4.3 Time Taken by each Scanner

Is important to test time taken by each tool to scan the all of web application.

As shown on table 4.4 and Appendix B, the average time for Acunetix to make a

report is almost 19.35 minutes, and 12 minutes for Netsparker, On the other hand

BBWAV taken 10.13 minutes, Therefore BBWAV had good result comparing with

Acunetix and watipi.

Table 4.4: Time of scanning taken by each tool

Netsparker Acunetix Wapiti BBWAV

12 m 19 s 19 m 35 s 1 h 50 m 13 m 13 s

As shown in table 4.4, measured time taken by the four scanners from the starting of

scan to the final result.

4.5 Discussion of Results

From the above result it is clear that different tools have reported diverse

numbers of vulnerabilities. An important observation is that Netsparker and Acunetix

(commercial tools) are able to identify more number of vulnerabilities than BBWAV

and the residual tools. On the other hand BBWAV proven efficacy of detecting XSS

vulnerabilities. Finally, we concluded that all scan tools detected less than 90% of

XSS vulnerabilities, while our tool detected all XSS vulnerabilities.

In our analysis we created our own custom testbed. Our performance analysis

was based on testing three black-box web vulnerabilities scanners against BBWAV.

Our results showed that BBWAV had a good timing to finalize the scan. As well the

detection rate of stored XSS vulnerabilities using BBWAV black-box scanner is high

and efficacy comparing with the three tools, on the other hand BBWAV need to be

improved for other vulnerabilities such as SQL injection and RFI.

66

CHAPTER FIVE

CONCLUSION AND FUTUR WORK

5.1 CONCLUSION

Throughout this dissertation, we have discussed and analyzed the state of web

security today. I have proposed a technique that aims to find vulnerabilities before a

malicious attacker has the chance. It is in this vein of preemptively finding

vulnerabilities that I believe will have the greatest return-on- investment. By finding

vulnerabilities early on in the development process, the vulnerabilities will be easier

and cheaper to fix. In this spirit, for moving forward I see the web security community

moving to approaches that create web applications that are secure by co nstruction.

Therefore, vulnerabilities can be prevented, just by designing an application in a

certain way, or perhaps by creating a new language or framework that is easy to

statically analyze. As shown throughout this dissertation, web application

vulnerabilities are incredibly prevalent, and show no signs of stopping. In order to

counteract this trend, we require novel ideas: new ways of designing applications, new

tools to automatically find security vulnerabilities, or new approaches to web

applications. The web is too important to wait; we must take responsibly for securing

this popular platform.

We tested our concepts by running BBWAV, our open-source prototype

implementation, on open test web application and comparing it with three other

scanner tools. The empirical results show that we are able to efficiently and

automatically detect vulnerabilities with a low false positive rate. That testbed show

also that our tool efficacy to detect XSS and RFI vulnerabilities.

5.2 Crawling

Although we have not evaluated scanners’ performance in the crawling phase

in detail, there are factors in this phase influencing the scanning experience, such as

the effectiveness of session management. Only with well-controlled session

management can the functionalities of a scanner be utilized to its limit. In case studies

for real- life web applications, due to several failures in keeping stable session states,

Wapiti could not reach enough web resources in the crawling phase during several

scanning runs. In order to improve this, scanners should have good usability in the

67

functionalities like auto login and session maintenance. Many scanners have options

to use the cookie string of an authenticated session in their configurations, which is

easy to use and control, but this is the only method for many scanners. If the most

frequent login method is not working, a good scanner should have several other

methods as back up, since this can greatly increase a scanner’s usability.

5.3 Limitations and Future Work

 This work didn’t cover all the top ten security vulnerabilities defined by the

Open Web Application Security testbed; we just considered the XSS, SQL

injection and RFI vulnerabilities.

 Small size PHP programs were tested using our approach as a proof of

concept. More experiments should be conducted considering larger size and

more sophisticated programs.

 Our work considers only PHP using Java Script Web applications. Other

platforms such as ASP.net and JSP should be considered as well.

Despite the above-mentioned advantages, our techniques have major limitations.

First, our techniques are based on dynamic analysis and thus confronted with the

inherent challenge of addressing the completeness of the analysis. Insufficient

exploration of the state space of a web application leads to inaccurate characterization

of application logic, resulting in both false positives. Although we leverage carefully

crafted user simulators and the automated crawler to minimize the chances of

insufficient exploration, we cannot reason the coverage of the state space of a web

application and improve it automatically. On the other hand the access to the pages

that require authentication it’s an issue that confronts us.

Future work will address the above limitations. More analysis and

improvement to the fitness function will be considered in addition. As well we are

planning to implement more attack types to detect most vulnerability. Also, there is

other testbed room to test and improve in the performance of BBWAV we will take

them under consideration. We are also currently setting up a web site where the code

Source of BBWAV can be downloaded from. Although we are aware that

BBWAV can be used for malicious purposes and even academic research, we believe

that it can provide valuable help for web application developers to audit the security of

their application.

68

REFERENCES

Acunetix,. (January 2014). “Website Security with Acunetix Web Vulnerability

Scanner,” Available: http://www.acunetix.com.

Akrout, R., Alata, E., Kaaniche, M., & Nicomette, V. (2014). An automated black box

approach for web vulnerability identification and attack scenario

generation. Journal of the Brazilian Computer Society, 20(1), 1-16.

Akram, M., & Ashraf, W. (2015). Analytical Study of Black Box and White Box

Testing for Database Applications.

Al-Saleem, S. M. (2015). A Critical Survey of different Security aspects in Saudi

Arabian Web Servers. International Journal of Computer Science and Network

Security (IJCSNS), 15(2), 1.

AnantaSec. Web Vulnerability Scanners Evaluation (Jan. 2009).

http://anantasec.blogspot.com/2009/01/web-vulnerability-scanners

comparison.html,

A. Roichman, E. Gudes, (2008). “DIWeDa - Detecting Intrusions in WebDatabases”.

In: Atluri, V. (ed.) DAS 2008. LNCS, vol.5094, pp. 313–329. Springer,

Heidelberg.

Avancini, A. and M. Ceccato (2010). Towards security testing with taint analysis and

genetic algorithms. Proceedings of the 2010 ICSE Workshop on Software

Engineering for Secure Systems. Cape Town, South Africa, ACM: 65-71

A. van Kesteren and D. Jackson, (Apr. 2006). The XMLHttpRequest Object.

http://www.w3.org/TR/2006/WD-XMLHttpRequest-20060405/.

A. Wiegenstein, F. Weidemann, M. Schumacher, and S. Schinzel (Oct. 2006). Web

Application Vulnerability Scanners—a Benchmark. Technical report, Virtual

Forge GmbH.

Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E.kruegel, C., and

Vigna, (2008). Saner: Composing Static and Dynamic Analysis to Validate

Sanitization in Web Applications. IEEE Symposium on Security and Privacy,

IEEE, pp. 387–401.

Bau, J., Bursztein, E., Gupta, D., & Mitchell, J. (2010, May). State of the art:

Automated black-box web application vulnerability testing. In Security and

Privacy (SP), 2010 IEEE Symposium on (pp. 332-345). IEEE.

69

Bennetts, S. (2013). Owasp zed attack proxy. AppSec USA 2013.

B.I.A. Barry and H.A. Chan, (2009). “Syntax, and Semantics-Base Signature Database

for Hybrid Intrusion Detection Systems,” Security and Comm. Networks, vol.

2, no. 6, pp. 457-475.

C. Gould, Z. Su, and P. Devanbu, (2004). "JDBC checker: A static analysis tool for

SQL/JDBC applications", pp. 697- 698.

Chen, J. M., & Wu, C. L. (2010, December). An automated vulnerability scanner for

Injection attack based on injection point. In Computer Symposium (ICS), 2010

International (pp. 113-118). IEEE.

Cho, Y. C. (2015). Implementation and analysis of website security mining system,

applied to universities' academic networks. Tehnički vjesnik, 22(2), 279-287.

David Scott and Richard Sharp, (2002). Abstracting application-level Web security.

11thACM International World Wide Web Conference, Hawaii, USA.

Deven Gol, Nisha Shah and PriyankBhojak (May. 2015). Web Application security

tool to identify the different Vulnerabilities using RUP model. (IJETEE –

ISSN: 2320-9569).

FELMETSGER, V., CAVEDON, L., KRUEGEL, C., AND VIGNA, G, (August

2010) Toward Automated Detection of Logic Vulnerabilities in Web

Applications. In Proceedings of the USENIX Security Symposium

(Washington, DC).

Foundstone, (May 2006). Hacme Bank v2.0. http://www.foundstone.com/us/

 resources/proddesc/hacmebank.htm.

Gordon M. Snow, Federal bureau of investigation (FBI), (September 14, 2011)

“Statement before the House Financial Services Committee, Subcommittee on

Financial Institutions and Consumer Credit Washington, D.C”.

G. William, J. Halfond, A. Orso, (2006). “Using Positive Tainting and Syntax Aware

Evaluation to Counter SQL Injection Attacks, 14th ACM SIGSOFT

international symposium on Foundations of software engineering.

HALFOND, W., CHOUDHARY, S., AND ORSO, A, (2009). Penetration testing

with improved input vector identification. In Software Testing Verification and

Validation, 2009. ICST’09. International Conference ,IEEE, pp. 346–355.

H. Peine, (Jan. 2006). Security Test Tools for Web Applications. Technical Report

048.06, Fraunhofer IESE.

Hassan, A. E., & Holt, R. C. (2002, May). Architecture recovery of web applications.

http://www.justice.gov/

70

 In Software Engineering, 2002. ICSE 2002. Proceedings of the 24rd

 International Conference on (pp. 349-359). IEEE.

Herzberg, A., & Shulman, H. (2012, September). Security of patched DNS.

In European Symposium on Research in Computer Security (pp. 271-288).

Springer Berlin Heidelberg.

Hodges, J., Jackson, C., & Barth, A. (2012). Http strict transport security (hsts) (No.

 RFC 6797).

HUANG, Y.-W., YU, F., HANG, C., TSAI, C.-H., LEE, D.- T., AND KUO, S.-Y,

(2004). Securing web application code by static analysis and runtime

protection. In WWW ’04: Proceedings of the 13th international conference on

World Wide Web (New York, NY, USA), ACM, pp. 40–52.

Hussein, S. S. (2015). STREAMING MEDIA: RISKS AND SOLUTION DESIGN A

SECURE STREAMING SYSTEM.

HTTPUnit (Feb 2011): http://httpunit.sourceforge.net.

I. Lee , S. Jeong, S. Yeoc, J, (2011). Moond, “A novel method for SQL injection

attack detection based on removing SQL query attribute”, Journal Of

mathematical and computer modeling, Elsevier.

James, J., Coutts, J., & Gururajan, R. (2015). It's all about the benefits: Why extension

 professionals adopt Web 2.0 technologies. Rural Extension and Innovation

 Systems Journal, 11(1), 72.

Jerry Brito, (November 18, 2013). U.S. Senate Committee on Homeland Security &

Governmental Affairs,“BEYOND SILK ROAD: POTENTIAL RISKS,

THREATS, AND \ PROMISES OF VIRTUAL CURRENCIES”, P 15.

J. J. Garrett, (Feb.2005). Ajax: A New Approach to Web Applications.

http://www.adaptivepath.com/ideas/essays/archives/000385.php.

Johari, R., & Sharma, P. (2012, May). A survey on web application vulnerabilities

(SQLIA, XSS) exploitation and security engine for SQL injection.

In Communication Systems and Network Technologies (CSNT), 2012

International Conference on (pp. 453-458). IEEE.

JOVANOVIC, N. KRUEGEL, C. AND KIRDA, E, (2010). Static analysis for

detecting taint-style vulnerabilities in web applications. Journal of Computer

Security 18, 5, 861–907.

Kicillof, N., Grieskamp, W., Tillmann, N., & Braberman, V. (2007, July). Achieving

71

both model and code coverage with automated gray-box testing. InProceedings

of the 3rd international workshop on Advances in model-based testing (pp. 1-

11). ACM.

Kieyzun, A., P. J. Guo, et al. (2009). Automatic creation of SQL Injection and

cross-site scripting attacks. Software Engineering, 2009. ICSE 2009. IEEE 31st

International Conference on.

Kosuga, Y., K. Kernel, et al. (2007). Sania: Syntactic and Semantic Analysis for

Automated Testing against SQL Injection. Computer Security

Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual.

Kumar, H. (2014). Learning Nessus for Penetration Testing. Packt Publishing Ltd.

Web Application Attack and Audit Framework. [Online].

Available: http://w3af.sourceforge.net/

Laranjeiro, N., Vieira, M., and Madeira, H, (2009), “Protecting Database Centric Web

Services against SQL/XPath Injection Attacks”, In Database and Expert

Systems Applications, Springer BerlinHeidelberg , pp. 271-278.

Liban, A., & Hilles, S. (2014, August). Enhancing Mysql Injector vulnerability

checker tool (Mysql Injector) using inference binary search algorithm for blind

timing-based attack. In Control and System Graduate Research Colloquium

(ICSGRC), 2014 IEEE 5th (pp. 47-52). IEEE.

Li, N., T. Xie, et al. (2010). "Perturbation-based user-input-validation testing

of web applications." Journal of Systems and Software 83(11): 2263-2274.

Li, X., Si, X., & Xue, Y. (2014, March). Automated black-box detection of access

control vulnerabilities in web applications. In Proceedings of the 4th ACM

conference on Data and application security and privacy (pp. 49-60). ACM.

Li, X., Yan, W., AND Xue, Y, (2012), SENTINEL: Securing Database from Logic

Flaws in Web Applications. In CODASPY pp. 25–36.

Li, X., & Xue, Y. (2013, May). LogicScope: automatic discovery of logic

vulnerabilities within web applications. In Proceedings of the 8th ACM

SIGSAC symposium on Information, computer and communications

security (pp. 481-486). ACM.

L. Suto (Oct. 2007). Analyzing the Effectiveness and Coverage of Web Application

Security Scanners. Case Study.

L. Suto (Feb 2010). Analyzing the Accuracy and Time Costs of Web Application

Security Scanners.

72

Lucca, G. A. D. and A. R. Fasolino (2006). "Testing Web-based applications:

The state of the art and future trends." Inf. Softw. Technol. 48(12): 1172-1186.

McAllister, S., E. Kirda, et al. (2008). Leveraging User Interactions for In-Depth

Testing of Web Applications Recent Advances in Intrusion Detection.

McClure, and I.H. Kruger, (2005). "SQL DOM: compile time checking of dynamic

SQL statements," Software Engineering, ICSE 2005, Proceedings. 27th

International Conference on, pp. 88- 96.

M. Cova, D. Balzarotti. (2007),“Swaddler:An Approach for the Anomaly-based

Detection of State Violations in Web Applications”, Recent Advances in

Intrusion Detection, Proceedings, volume: 4637 Pages: 63-86.

M. Curphey and R. Araujo, (2006). Web Application Security Assessment Tools.

IEEE Security and Privacy, 4(4):32–41.

M. Junjin, (2009). “An Approach for SQL Injection Vulnerability Detection”, Sixth

International Conferenceon Information Technology: New Generations ITNG,

pp. 1411-1414.

Mei Junjin, (Apr 2009). “An Approach for SQL Injection Vulnerability Detection,”

Proceedings of the 6th Int. Conf. on Information Technology: New

Generations, Las Vegas, Nevada, pp. 1411-1414.

Mirza Mohammed Akram Baig, (Spring 2012). Security vulnerabilities in php

applicatons. Master thesis, San Diego State University.

M. Martin, B. Livshits, and M. S. Lam, (2005), “Finding Application Errors and

Security Flaws Using PQL: A Program Query Language”, ACM Notices,

Volume 40, Issue:10 pages.

M. Vieira, N. Antunes, and H. Madeira. (2009). Using Web Security Scanners to

Detect Vulnerabilities in Web Services. In Proceedings of the Conference on

Dependable Systems and Networks (DSN).

Netsparker, “Netsparker Web Application Security Scanner.” [Online]. Available:

http://www.mavit`unasecurity.com/about/. [Accessed: 05- Apr-2013].

Nidhra, S., & Dondeti, J. (2012). Black box and white box testing techniques–a

literature review. International Journal of Embedded Systems and Applications

(IJESA), 2(2), 29-50.

Nikto. Web Server Scanner, (2005). http://www.cirt.net/code/nikto.shtml.

Noertjahyana, A., Pangalila, R., & Andjarwirawan, J (2015) . Information

73

Management System and Website Server Penetration Testing Case Study

University.

Open Web Application Security Project (OWASP). OWASP WebGoat Project.

 http://www.owasp.org/index.php/Category:OWASP WebGoat Project.

Open Web Application Security Project (OWASP). OWASP SiteGenerator.

 http://www.owasp.org/index.php/OWASP_SiteGenerator.

Orebaugh, A., & Pinkard, B. (2011). Nmap in the enterprise: your guide to network

scanning. Syngress.

OWASP & WASC AppSec, (Nov 12-15, 2007), Conference for the application

security community, San Jose, CA

P. Grazie, (2006). “SQL Prevent thesis”, University of British Columbia (UBC)

Vancouver,Canada.

PowerFuzzer, (February 2014). “PowerFuzzer - a fuzzer that introduces powerfull and

easy webfuzzing,” Available: http://www.powerfuzzer.com/.

Popov, A. (2015). Prohibiting RC4 cipher suites. Computer Science, 2355, 152-164.

R. A. McClure and I. H. Krüger, (2005), "SQL DOM: compile time checking of

dynamic SQL statements," 2005, pp. 88-96.

R. Berjon, S. Faulkner, T. Leithead, E. D. Navara, (Feb. 2014). E. O’Connor, S.

Pfeiffer, and I. Hickson. HTML5.

http://www.w3.org/TR/2014/CR-html5-20140204.

R.Lippmann, E. Kirda and A. Trachtenberg (2010, December), Springer Berlin /

Heidelberg. 5230:191-210.

Rungsawang, A., & Angkawattanawit, N. (2005). Learnable topic-specific web

 crawler. Journal of Network and Computer Applications, 28(2), 97-114.

Salas, P. A. P., K. Padmanabhan, et al. (2007). Model-Based Security Vulnerability

Testing. Software Engineering Conference, 2007. ASWEC 2007.18th

Australian.

Salas, P., Invert, M., & Martins, E. (2015). A Black-Box Approach to Detect

Vulnerabilities in Web Services Using Penetration Testing. Latin America

Transactions, IEEE (Revista IEEE America Latina), 13(3), 707-712.

Sectoolmarket.com, 01/07/2015

Shahriar, H. and M. Zulkernine (2008). MUSIC: Mutation-based SQL

Injection Vulnerability Checking. Quality Software, 2008. QSIC '08. The

Eighth International Conference on.

http://www.owasp.org/index.php/OWASP_SiteGenerator
http://www.powerfuzzer.com/

74

Shahriar, H. and M. Zulkernine (2009). MUTEC: Mutation-based testing of

Cross Site Scripting. Software Engineering for Secure Systems, 2009. SESS

'09. ICSE Workshop on.

Shahriar, H. and M. Zulkernine (2008). Mutation-Based Testing of Buffer

Overflow Vulnerabilities. Computer Software and Applications, 2008.

COMPSAC '08. 32nd Annual IEEE International.

Shema, M. (2012). Hacking web apps: detecting and preventing web application

security problems. Newnes.

S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, (2006). SecuBat: A Web Vulnerabil

 ity Scanner. In Proceedings of the International World Wide Web Conference

 (WWW).

Spett, K. (2005). Cross-site scripting. SPI Labs, 1, 1-20.

Sun, F., Xu, L., & Su, Z. (2014). Detecting Logic Vulnerabilities in E-commerce

Applications. In NDSS.

Tappenden, A., P. Beatty, et al. (2005). Agile security testing of Web-based

systems via HTTPUnit. Agile Conference, 2005. Proceedings.

Tang, J. D., & Hom, K. (2015). U.S. Patent No. 8,977,742. Washington, DC: U.S.

 Patent and Trademark Office.

Tian, H., J. Xu, et al. (2009). Research on strong-association rule based web

application vulnerability detection. Computer Science and Information

Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on.

U.S. OPM (OFFICE OF PERSONNEL MANAGEMENT), (Sep 2015). “Statement by

OPM Press Secretary Sam Schumach on Background Investigations Incident”.

U.S. SEC (Securities and Exchange Commission), (October 2015). ” The Need for

Greater Focus onthe Cybersecurity Challenges Facing Small and Midsize

Businesses”.

W. G. Halfond, S. R. Choudhary, and A. Orso,(2009). Penetration Testing with

Improved Input Vector Identification. In Proceedings of the IEEE International

Conference on Software Testing, Verification and Validation (ICST).

W. G. J. Halfond and A. Orso, (2006). "Preventing SQL injection attacks using

AMNESIA," presented at the Proceedings of the 28th international conference

on Software engineering, Shanghai, China.

W. Robertson, (June 2009). Detecting and Preventing Attacks Against Web

Applications. PhD thesis, University of California, Santa Barbara.

75

Yang, W., Prasad, M. R., & Xie, T. (2013, March). A grey-box approach for

automated GUI-model generation of mobile applications. In International

Conference on Fundamental Approaches to Software Engineering (pp. 250-

265). Springer Berlin Heidelberg.

Y. Huang, S. Huang, T. Lin, and C. Tsai. Sivilotti, (May 2003) . “Web Application

Security Assessment by Fault Injection and Behavior Monitoring”, In

Proceedings of the 11th International Word Wide Web Conference.

Y. Huang, F. Yu, C. Yang, C. H. Tsai, D. T. Lee, and S. Y.Ku, (May 2004). “Securing

WebApplication Code by Static Analysis and Runtime Protection”, In

Proceedings of the 12th International Word Wide Web Conference.

Y. Shin, L. Williams and T. Xie, (2006). "SQLUnitGen: Test Case Generation for

SQL Injection Detection," North Carolina StateUniv., Raleigh Technical

report, NCSU CSC TR 2006-21.

Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai (2003). Web Application

Security Assessment by Fault Injection and Behavior Monitoring. In

Proceedings of theInternational World Wide Web Conference (WWW).

Zalewski, M., Heinen, N., & Roschke, S. (2011). Skipfish-web application security

scanner.

X. Li, W. Yan, and Y. Xue, (2012), SENTINEL: Securing Database from Logic Flaws

in Web Applications. In Proceedings of the ACM Conference on Data and

Application Security and Privacy (CODASPY).

76

Appendix A

Web Crawler Implemented Code using C#

using System;
using System.Collections.Generic;

using System.Linq;
using System.Text;

using System.Text.RegularExpressions;
using System.Windows.Forms;
using System.Net;

using System.IO;
{

class WebCrawler
{

protected List<string> links = null;
protected string baseURL;

public WebCrawler(string target)
{
this.baseURL = target;

links = new List<string>();
}

protected void displayOutput(string p)
{
try

{
SharedVariables.myTestingForm.displayOutputActivity(p);

}
catch (Exception) { }
}

public string fetchPage()
{

string strURL = this.baseURL;
HttpWebRequest req = null;
try

{
req = HttpWebRequest.Create(strURL) as HttpWebRequest;

}
catch (Exception ex)
{

displayOutput(string.Format("getting page : {0} fails , details : {1} \n", strURL,
ex.Message));

}
if (req == null)

77

{
displayOutput(string.Format("cann't create request object for page : {0} \n", strURL));
return string.Empty;

}
req.Method = "GET";

HttpWebResponse res = null;
try

{

res = req.GetResponse() as HttpWebResponse;
}
catch (Exception ex)

{
displayOutput(string.Format("No response , url : {0} , details : {1} \n",

strURL, ex.Message));
}
if (res != null && res.StatusCode != HttpStatusCode.OK)

{
displayOutput(string.Format("error while retrieving : {0} , server response : {1} \n",

strURL, res.StatusCode));
}
if (res == null || res.StatusCode != HttpStatusCode.OK)

{
return string.Empty;
}

Stream s = res.GetResponseStream();
StreamReader sr = new StreamReader(s);

string strHTML = sr.ReadToEnd();
sr.Close();
sr.Dispose();

sr = null;
s.Close();

s.Dispose();
s = null;
displayOutput(string.Format("Fetched successfully , url : {0} \n", strURL));

links.Add(strURL);
return strHTML;

}
public void analysePage(string strHTML)
{

HtmlParser p = new HtmlParser(this.baseURL, strHTML);
links.AddRange(p.getInternalLinks());

}
public List<string> getLinks()
{

return this.links; }

}

78

}

Appendix B

Testbed Screenshots for Used Web Scanners

Figure B: Netsparker test screenshot

Figure A: BBWAV test screenshot

79

Figure C: Wapiti test screenshot

Figure D: Acunetix test screenshot

80

Figure E: Wapiti test report screenshot

